




免费预览已结束,剩余14页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,神经网络几乎与AI同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。直到80年代,获得了关于人工神经网络切实可行的算法,以及以VonNeumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,才是神经网络理论得到复兴。,到目前为止,已经出现许多神经网络模型及相应的学习算法。其中误差逆传播(ErrorBack-propagation)算法(简称BP算法)是一种较常用的算法。人工神经网络可用于对物群的目标拟合、模式分类和预测。,神经网络基本结构神经元人工神经网络结构和基本原理基本上是以人脑的组织结构和活动规律为背景,它反映料人脑的某些基本特征,是人脑的某些抽象、简化或模仿。神经网络有许多并行运算的功能简单的单元组成,每个神经元有一个输出,它可以连接到许多其它神经元,每个神经元输入有多个连接通路,每个连接通路对应一个连接权系数。,X1,X2,Xn,y1,y2,ym,输入层节点,隐层节点,输出层节点,这个算法的学习过程,由正向传播和反相传播组成,在正向传播过程中,输入信息从输入层经隐单元层逐层处理,并传向输入层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望得输出,则转入反向传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号减小,然后再转入正向传播过程,反复迭代,直到误差小于给定的值为止。,BP网络的学习过程主要由四部分组成:输入模式顺传播、输出误差逆传播、循环记忆训练、学习结果判别。,(1)输入模式顺传播,根据神经元模型原理,计算中间层各神经元的激活值:(j=1,2,p)式中:wij-输入层至中间层连接权;-中间层单元阀值;P中间层单元数。,激活函数采用S型函数,即这里之所以选S型函数作为BP神经元网络的激活函数是因为它是连续可微分的,而且更接近于生物神经元的信号输入形式。,阀值在学习过程中和权值一样也不断的被修正。同理可求出输出端的激活值和输出值。设输出层第t个单元的激活值为则设输出层第t个单元的实际输出值为则(t=1,2,q),(2)输出误差的逆传播,在第一步的模式顺传播计算中我们得到了网络的实际输出值,当这些实际输出值与希望的输出值不一样时或其误差大于所限定的数值时,就要对网络进行校正。这里的校正是从后向前进行的,所以叫做误差逆传播,计算时是从输出层到中间层,再从中间层到输入层。,(3)循环记忆训练,为使网络的输出误差趋于极小值。对于BP网输入的每一组训练模式,一般要经过数百次甚至上万次的循环记忆训练,才能使网络记住这一模式。这种循环记忆训练实际上就是反复重复上面介绍的输入模式顺传播和输出误差逆传播过程,使网络记住训练过程中权值的变化。,(4)学习结果的判别,BP算法存在的缺陷BP模型把一组样本的I/O问题变为一个非线性优化问题,使用了优化中最普通的梯度下降法,用迭代运算求解权相应于学习记忆问题,加入隐节点使优化问题的可调参数增加,从而可得到更精确的解。神经网络是一种映射表示方法,它是对简单的非线性函数进行复合,经过少数复合后,则可实现复杂的函数,这对数学映射方法有着重要的启事。但正因为它采用的的是非线性规划中的最速下降法,按误差的负梯度方向修改权值,因而通常存在着一些问题。,1由于学习速率是固定的,因此网络的收敛速度较慢,需要较长的收敛时间。这主要是由于学习速率太小造成的可采用变化的学习速率或自适应的学习速率加以改进。2由于是一个非线性优化问题,则不可避免地存在有局部极小的问题。通常,在BP算法中,随机设置初始权值时,网络的训练一般较难达到全局最优。3网络隐含层的层数和单元数的选择尚无理论上的指导,一般是根据经验或者是通过反复实验来确定。因此网络往往存在很大的冗余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生猪、菜牛、菜羊、家禽养殖废弃物资源化利用合同
- 离婚财产分割及子女居住权调整补充合同
- 绿色能源生产基地租赁及设备资产转让合同
- 城市公共卫生应急管理体系优化-洞察及研究
- 水塘承包协议书4篇
- 声学传感器在智能交通中的应用-洞察及研究
- 2025年教师招聘之《幼儿教师招聘》模拟考试题库B卷及答案详解【全优】
- 智能化动态配置管理-洞察及研究
- 新型降温材料与设备研发-洞察及研究
- 2025年专业养老知识题库及答案
- 医疗损害责任界定-洞察及研究
- 2025年海南省社区工作者招聘考试笔试试题(含答案)
- (2025年标准)监控维护维修协议书
- 国务院部署实施“人工智能+”行动的意见解读
- 2025海南省通信网络技术保障中心招聘事业编制人员(第2号)考试备考题库及答案解析
- 2025年全国中学生天文知识竞赛考试题库(含答案)
- 咸味香精基础知识培训课件
- 2025年医院药师职业技能大赛试题(附答案)
- 筠连王点科技有限公司3万吨-年复合导电浆料配套10吨-年碳纳米管粉体项目环评报告
- 2025年江苏省档案职称考试(新时代档案工作理论与实践)历年参考题库含答案详解(5套)
- 肥胖症诊疗指南(2024年版)解读
评论
0/150
提交评论