江苏省徐州市建平中学高二数学 简单的逻辑联结词、全称量词与存在量词学案_第1页
江苏省徐州市建平中学高二数学 简单的逻辑联结词、全称量词与存在量词学案_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

简单的逻辑联结词、全称量词与存在量词一、学习目标:1. 了解逻辑联结词“或”、“且”、“非”的含义;2、理解全称量词与存在量词的意义;3、能正确地对含有一个量词的命题进行否定。二、考纲知识梳理1、命题的真假判断“非p”形式复合命题的真假可以用下表表示: “p且q”形式复合命题的真假可以用下表表示:“p且q”形式复合命题的真假可以用下表表示:2、全称量词和存在量词3、含有一个量词的命题的否定三、例题解析例1写出由下述各命题构成的“Pq”,“ pq”,“ p”形式的复合命题,并指出所构成的这些复合命题的真假(1)p:9是144的约数,q:9是225的约数(2)p:方程x21=0的解是x=1,q:方程x21=0的解是x=1;(3)p:实数的平方是正数,q:实数的平方是0.例2.试判断下列命题的真假(1) (2)(3) (4)全(特)称命题的否定原语句是都是至少有一个至多有一个对任意使真否定形式不是不都是一个也没有至少有两个存在使假例3写出下列命题的否定,并判断命题的否定的真假,指出命题的否定属全称命题还是特称命题。(1)所有的有理数是实数;(2)有的三角形是直角三角形;(3)每个二次函数的图象与轴相交;(4)变式训练:写出下列命题的否定并判断其真假(1)p:存在一些四边形不是平行四边形;(2)p:所有的正方形都是矩形;(3)p:至少有一个实数,使;(4)p:例题4 变式训练:已知两个命题r(x):sinx+cosxm,s(x):x2+mx+10.如果对xR,r(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论