算法设计与分析+王晓东+教案.ppt_第1页
算法设计与分析+王晓东+教案.ppt_第2页
算法设计与分析+王晓东+教案.ppt_第3页
算法设计与分析+王晓东+教案.ppt_第4页
算法设计与分析+王晓东+教案.ppt_第5页
已阅读5页,还剩351页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,中国计算机学会“21世纪大学本科计算机专业系列教材”算法设计与分析,王晓东编著,2,主要内容介绍,第1章算法引论第2章递归与分治策略第3章动态规划第4章贪心算法第5章回溯法第6章分支限界法,3,主要内容介绍(续),第7章概率算法第8章NP完全性理论第9章近似算法第10章算法优化策略,4,第1章算法引论,1.1算法与程序1.2表达算法的抽象机制1.3描述算法1.4算法复杂性分析,本章主要知识点:,5,1.1算法与程序,输入:有零个或多个外部量作为算法的输入。输出:算法产生至少一个量作为输出。确定性:组成算法的每条指令清晰、无歧义。有限性:算法中每条指令的执行次数有限,执行每条指令的时间也有限。,是算法用某种程序设计语言的具体实现。程序可以不满足算法的性质(4)即有限性。,是满足下述性质的指令序列。,算法:,程序:,6,1.从机器语言到高级语言的抽象,1.2表达算法的抽象机制,高级程序设计语言的主要好处是:,(4)把繁杂琐碎的事务交给编译程序,所以自动化程度高,开发周期短,程序员可以集中时间和精力从事更重要的创造性劳动,提高程序质量。,(1)高级语言更接近算法语言,易学、易掌握,一般工程技术人员只需要几周时间的培训就可以胜任程序员的工作;,(2)高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;,(3)高级语言不依赖于机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可植性好、重用率高;,7,2.抽象数据类型,1.2表达算法的抽象机制,抽象数据类型是算法的一个数据模型连同定义在该模型上并作为算法构件的一组运算。,抽象数据类型带给算法设计的好处有:,(1)算法顶层设计与底层实现分离;(2)算法设计与数据结构设计隔开,允许数据结构自由选择;(3)数据模型和该模型上的运算统一在ADT中,便于空间和时间耗费的折衷;(4)用抽象数据类型表述的算法具有很好的可维护性;(5)算法自然呈现模块化;(6)为自顶向下逐步求精和模块化提供有效途径和工具;(7)算法结构清晰,层次分明,便于算法正确性的证明和复杂性的分析。,8,在本书中,采用Java语言描述算法。1.Java程序结构,1.3描述算法,以下,对Java语言的若干重要特性作简要概述。,(1)Java程序的两种类型:应用程序和applet区别:应用程序的主方法为main,其可在命令行中用命令语句java应用程序名来执行;applet的主方法为init,其必须嵌入HTML文件,由Web浏览器或applet阅读器来执行。,(2)包:java程序和类可以包(packages)的形式组织管理。,(3)import语句:在java程序中可用import语句加载所需的包。例如,importjava.io.*;语句加载java.io包。,9,1.3描述算法,2.Java数据类型,Java对两种数据类型的不同处理方式:,s=newString(“Welcome”);Strings=newString(“Welcome”);,10,1.3描述算法,表格1-1Java基本数据类型,11,1.3描述算法,3.方法,在Java中,执行特定任务的函数或过程统称为方法(methods)。例如,java的Math类给出的常见数学计算的方法如下表所示:,12,1.3描述算法,3.方法,计算表达式值的自定义方法ab描述如下:,publicstaticintab(inta,intb)return(a+b+Math.abs(a-b)/2;,(1)方法参数:Java中所有方法的参数均为值参数。上述方法ab中,a和b是形式参数,在调用方法时通过实际参数赋值。,(2)方法重载:Java允许方法重载,即允许定义有不同签名的同名方法。上述方法ab可重载为:,publicstaticdoubleab(doublea,doubleb)return(a+b+Math.abs(a-b)/2.0;,13,1.3描述算法,4.异常,Java的异常提供了一种处理错误的方法。当程序发现一个错误,就引发一个异常,以便在合适地方捕获异常并进行处理。,通常用try块来定义异常处理。每个异常处理由一个catch语句组成。,publicstaticvoidmain(Stringargs)tryf();catch(exception1)异常处理;catch(exception2)异常处理;finallyfinally块;,14,1.3描述算法,5.Java的类,(4)访问修饰,Java的类一般由4个部分组成:,(1)类名,(2)数据成员,(3)方法,15,1.3描述算法,6.通用方法,下面的方法swap用于交换一维整型数组a的位置i和位置j处的值。,publicstaticvoidswap(inta,inti,intj)inttemp=ai;ai=aj;aj=temp;,publicstaticvoidswap(objecta,inti,intj)objecttemp=ai;ai=aj;aj=temp;,该方法只适用于整型数组,该方法具有通用性,适用于Object类型及其所有子类,以上方法修改如下:,16,1.3描述算法,6.通用方法,(1)Computable界面,publicstaticComputablesum(Computablea,intn)if(a.length=0)returnnull;Computablesum=(Computable)a0.zero();for(inti=0;im1;正整数n的最大加数n1不大于m的划分由n1=m的划分和n1n-1的划分组成。,(3)q(n,n)=1+q(n,n-1);正整数n的划分由n1=n的划分和n1n-1的划分组成。,2.1递归的概念,例5整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。,39,2.1递归的概念,例5整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。,正整数n的划分数p(n)=q(n,n)。,40,41,2.1递归的概念,例6Hanoi塔问题设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。,42,在问题规模较大时,较难找到一般的方法,因此我们尝试用递归技术来解决这个问题。,当n=1时,问题比较简单。此时,只要将编号为1的圆盘从塔座a直接移至塔座b上即可。当n1时,需要利用塔座c作为辅助塔座。此时若能设法将n-1个较小的圆盘依照移动规则从塔座a移至塔座c,然后,将剩下的最大圆盘从塔座a移至塔座b,最后,再设法将n-1个较小的圆盘依照移动规则从塔座c移至塔座b。由此可见,n个圆盘的移动问题可分为2次n-1个圆盘的移动问题,这又可以递归地用上述方法来做。由此可以设计出解Hanoi塔问题的递归算法如下。,2.1递归的概念,例6Hanoi塔问题,publicstaticvoidhanoi(intn,inta,intb,intc)if(n0)hanoi(n-1,a,c,b);move(a,b);hanoi(n-1,c,b,a);,思考题:如果塔的个数变为a,b,c,d四个,现要将n个圆盘从a全部移动到d,移动规则不变,求移动步数最小的方案。,43,递归小结,优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。,44,递归小结,解决方法:在递归算法中消除递归调用,使其转化为非递归算法。1.采用一个用户定义的栈来模拟系统的递归调用工作栈。该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,优化效果不明显。2.用递推来实现递归函数。3.通过Cooper变换、反演变换能将一些递归转化为尾递归,从而迭代求出结果。后两种方法在时空复杂度上均有较大改善,但其适用范围有限。,45,分治法的适用条件,分治法所能解决的问题一般具有以下几个特征:该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质利用该问题分解出的子问题的解可以合并为该问题的解;该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。,因为问题的计算复杂性一般是随着问题规模的增加而增加,因此大部分问题满足这个特征。,这条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用,能否利用分治法完全取决于问题是否具有这条特征,如果具备了前两条特征,而不具备第三条特征,则可以考虑贪心算法或动态规划。,这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划较好。,46,分治法的基本步骤,divide-and-conquer(P)if(|P|=n0)adhoc(P);/解决小规模的问题dividePintosmallersubinstancesP1,P2,.,Pk;/分解问题for(i=1,i=k,i+)yi=divide-and-conquer(Pi);/递归的解各子问题returnmerge(y1,.,yk);/将各子问题的解合并为原问题的解人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。即将一个问题分成大小相等的k个子问题的处理方法是行之有效的。这种使子问题规模大致相等的做法是出自一种平衡(balancing)子问题的思想,它几乎总是比子问题规模不等的做法要好。,47,分治法的复杂性分析,一个分治法将规模为n的问题分成k个规模为nm的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:,通过迭代法求得方程的解:,注意:递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当min=tr+s,复杂度分析T(n)=O(4k)渐进意义下的最优算法,60,合并排序,基本思想:将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合。,publicstaticvoidmergeSort(Comparablea,intleft,intright)if(left=j)break;MyMath.swap(a,i,j);ap=aj;aj=x;returnj;,初始序列,j-;,5,7,5,2,6,8,i+;,5,6,5,2,7,8,j-;,5,2,5,6,7,8,i+;,完成,5,2,567,8,65,privatestaticintrandomizedPartition(intp,intr)inti=random(p,r);MyMath.swap(a,i,p);returnpartition(p,r);,快速排序,快速排序算法的性能取决于划分的对称性。通过修改算法partition,可以设计出采用随机选择策略的快速排序算法。在快速排序算法的每一步中,当数组还没有被划分时,可以在ap:r中随机选出一个元素作为划分基准,这样可以使划分基准的选择是随机的,从而可以期望划分是较对称的。,最坏时间复杂度:O(n2)平均时间复杂度:O(nlogn)辅助空间:O(n)或O(logn)稳定性:不稳定,66,线性时间选择,给定线性序集中n个元素和一个整数k,1kn,要求找出这n个元素中第k小的元素,privatestaticComparablerandomizedSelect(intp,intr,intk)if(p=r)returnap;inti=randomizedpartition(p,r),j=i-p+1;if(k=j)returnrandomizedSelect(p,i,k);elsereturnrandomizedSelect(i+1,r,k-j);,在最坏情况下,算法randomizedSelect需要O(n2)计算时间但可以证明,算法randomizedSelect可以在O(n)平均时间内找出n个输入元素中的第k小元素。,67,线性时间选择,如果能在线性时间内找到一个划分基准,使得按这个基准所划分出的2个子数组的长度都至少为原数组长度的倍(01是某个正常数),那么就可以在最坏情况下用O(n)时间完成选择任务。,例如,若=9/10,算法递归调用所产生的子数组的长度至少缩短1/10。所以,在最坏情况下,算法所需的计算时间T(n)满足递归式T(n)T(9n/10)+O(n)。由此可得T(n)=O(n)。,68,将n个输入元素划分成n/5个组,每组5个元素,只可能有一个组不是5个元素。用任意一种排序算法,将每组中的元素排好序,并取出每组的中位数,共n/5个。递归调用select来找出这n/5个元素的中位数。如果n/5是偶数,就找它的2个中位数中较大的一个。以这个元素作为划分基准。,线性时间选择,设所有元素互不相同。在这种情况下,找出的基准x至少比3(n-5)/10个元素大,因为在每一组中有2个元素小于本组的中位数,而n/5个中位数中又有(n-5)/10个小于基准x。同理,基准x也至少比3(n-5)/10个元素小。而当n75时,3(n-5)/10n/4所以按此基准划分所得的2个子数组的长度都至少缩短1/4。,69,privatestaticComparableselect(intp,intr,intk)if(r-p5)/用某个简单排序算法对数组ap:r排序;bubbleSort(p,r);returnap+k-1;/将ap+5*i至ap+5*i+4的第3小元素/与ap+i交换位置;/找中位数的中位数,r-p-4即上面所说的n-5for(inti=0;i=(r-p-4)/5;i+)ints=p+5*i,t=s+4;for(intj=0;j3;j+)bubble(s,t-j);MyMath.swap(a,p+i,s+2);Comparablex=select(p,p+(r-p-4)/5,(r-p+6)/10);inti=partition(p,r,x),j=i-p+1;if(k=j)returnselect(p,i,k);elsereturnselect(i+1,r,k-j);,复杂度分析T(n)=O(n),上述算法将每一组的大小定为5,并选取75作为是否作递归调用的分界点。这2点保证了T(n)的递归式中2个自变量之和n/5+3n/4=19n/20=n,01。这是使T(n)=O(n)的关键之处。当然,除了5和75之外,还有其他选择。,70,最接近点对问题,给定平面上n个点的集合S,找其中的一对点,使得在n个点组成的所有点对中,该点对间的距离最小。,71,最接近点对问题,如果S的最接近点对是p3,q3,即|p3-q3|d,则p3和q3两者与m的距离不超过d,即p3(m-d,m,q3(m,m+d。由于在S1中,每个长度为d的半闭区间至多包含一个点(否则必有两点距离小于d),并且m是S1和S2的分割点,因此(m-d,m中至多包含S中的一个点。由图可以看出,如果(m-d,m中有S中的点,则此点就是S1中最大点。因此,我们用线性时间就能找到区间(m-d,m和(m,m+d中所有点,即p3和q3。从而我们用线性时间就可以将S1的解和S2的解合并成为S的解。,能否在线性时间内找到p3,q3?,72,最接近点对问题,下面来考虑二维的情形。,选取一垂直线l:x=m来作为分割直线。其中m为S中各点x坐标的中位数。由此将S分割为S1和S2。递归地在S1和S2上找出其最小距离d1和d2,并设d=mind1,d2,S中的最接近点对或者是d,或者是某个p,q,其中pP1且qP2。能否在线性时间内找到p,q?,73,最接近点对问题,考虑P1中任意一点p,它若与P2中的点q构成最接近点对的候选者,则必有distance(p,q)d。满足这个条件的P2中的点一定落在一个d2d的矩形R中由d的意义可知,P2中任何2个S中的点的距离都不小于d。由此可以推出矩形R中最多只有6个S中的点。因此,在分治法的合并步骤中最多只需要检查6n/2=3n个候选者,能否在线性时间内找到p3,q3?,证明:将矩形R的长为2d的边3等分,将它的长为d的边2等分,由此导出6个(d/2)(2d/3)的矩形。若矩形R中有多于6个S中的点,则由鸽舍原理易知至少有一个(d/2)(2d/3)的小矩形中有2个以上S中的点。设u,v是位于同一小矩形中的2个点,则distance(u,v)d。这与d的意义相矛盾。,74,为了确切地知道要检查哪6个点,可以将p和P2中所有S2的点投影到垂直线l上。由于能与p点一起构成最接近点对候选者的S2中点一定在矩形R中,所以它们在直线l上的投影点距p在l上投影点的距离小于d。由上面的分析可知,这种投影点最多只有6个。因此,若将P1和P2中所有S中点按其y坐标排好序,则对P1中所有点,对排好序的点列作一次扫描,就可以找出所有最接近点对的候选者。对P1中每一点最多只要检查P2中排好序的相继6个点。,最接近点对问题,75,最接近点对问题,publicstaticdoublecpair2(S)n=|S|;if(nm2.d1=cpair2(S1);d2=cpair2(S2);3.dm=min(d1,d2);,4.设P1是S1中距垂直分割线l的距离在dm之内的所有点组成的集合;P2是S2中距分割线l的距离在dm之内所有点组成的集合;将P1和P2中点依其y坐标值排序;并设X和Y是相应的已排好序的点列;5.通过扫描X以及对于X中每个点检查Y中与其距离在dm之内的所有点(最多6个)可以完成合并;当X中的扫描指针逐次向上移动时,Y中的扫描指针可在宽为2dm的区间内移动;设dl是按这种扫描方式找到的点对间的最小距离;6.d=min(dm,dl);returnd;,复杂度分析T(n)=O(nlogn),76,设计一个满足以下要求的比赛日程表:(1)每个选手必须与其他n-1个选手各赛一次;(2)每个选手一天只能赛一次;(3)循环赛一共进行n-1天。,按分治策略,将所有的选手分为两半,n个选手的比赛日程表就可以通过为n/2个选手设计的比赛日程表来决定。递归地用对选手进行分割,直到只剩下2个选手时,比赛日程表的制定就变得很简单。这时只要让这2个选手进行比赛就可以了。,77,循环赛日程表,设计一个满足以下要求的比赛日程表:(1)每个选手必须与其他n-1个选手各赛一次;(2)每个选手一天只能赛一次;(3)循环赛一共进行n-1天。,按分治策略,将所有的选手分为两半,n个选手的比赛日程表就可以通过为n/2个选手设计的比赛日程表来决定。递归地用对选手进行分割,直到只剩下2个选手时,比赛日程表的制定就变得很简单。这时只要让这2个选手进行比赛就可以了。,78,第3章动态规划,79,动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,80,算法总体思想,动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,81,但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次。,算法总体思想,82,如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。,算法总体思想,T(n),Thosewhocannotrememberthepastaredoomedtorepeatit.-GeorgeSantayana,ThelifeofReason,BookI:IntroductionandReasoninCommonSense(1905),83,动态规划基本步骤,找出最优解的性质,并刻划其结构特征。递归地定义最优值。以自底向上的方式计算出最优值。根据计算最优值时得到的信息,构造最优解。,84,完全加括号的矩阵连乘积,(1)单个矩阵是完全加括号的;(2)矩阵连乘积是完全加括号的,则可表示为2个完全加括号的矩阵连乘积和的乘积并加括号,即,16000,10500,36000,87500,34500,完全加括号的矩阵连乘积可递归地定义为:设有四个矩阵,它们的维数分别是:总共有五中完全加括号的方式,85,矩阵连乘问题,给定n个矩阵,其中与是可乘的,。考察这n个矩阵的连乘积由于矩阵乘法满足结合律,所以计算矩阵的连乘可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积,86,矩阵连乘问题,给定n个矩阵A1,A2,An,其中Ai与Ai+1是可乘的,i=1,2,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。,穷举法:列举出所有可能的计算次序,并计算出每一种计算次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次序。,算法复杂度分析:对于n个矩阵的连乘积,设其不同的计算次序为P(n)。由于每种加括号方式都可以分解为两个子矩阵的加括号问题:(A1.Ak)(Ak+1An)可以得到关于P(n)的递推式如下:,87,矩阵连乘问题,穷举法动态规划,将矩阵连乘积简记为Ai:j,这里ij,考察计算Ai:j的最优计算次序。设这个计算次序在矩阵Ak和Ak+1之间将矩阵链断开,ikj,则其相应完全加括号方式为,计算量:Ai:k的计算量加上Ak+1:j的计算量,再加上Ai:k和Ak+1:j相乘的计算量,88,分析最优解的结构,特征:计算Ai:j的最优次序所包含的计算矩阵子链Ai:k和Ak+1:j的次序也是最优的。矩阵连乘计算次序问题的最优解包含着其子问题的最优解。这种性质称为最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法求解的显著特征。,89,建立递归关系,设计算Ai:j,1ijn,所需要的最少数乘次数mi,j,则原问题的最优值为m1,n当i=j时,Ai:j=Ai,因此,mi,i=0,i=1,2,n当ij时,可以递归地定义mi,j为:,这里的维数为,的位置只有种可能,90,计算最优值,对于1ijn不同的有序对(i,j)对应于不同的子问题。因此,不同子问题的个数最多只有由此可见,在递归计算时,许多子问题被重复计算多次。这也是该问题可用动态规划算法求解的又一显著特征。用动态规划算法解此问题,可依据其递归式以自底向上的方式进行计算。在计算过程中,保存已解决的子问题答案。每个子问题只计算一次,而在后面需要时只要简单查一下,从而避免大量的重复计算,最终得到多项式时间的算法,91,用动态规划法求最优解,publicstaticvoidmatrixChain(intp,intm,ints)intn=p.length-1;for(inti=1;i=n;i+)mii=0;for(intr=2;r=n;r+)for(inti=1;i=n-r+1;i+)intj=i+r-1;mij=mi+1j+pi-1*pi*pj;sij=i;for(intk=i+1;kj;k+)intt=mik+mk+1j+pi-1*pk*pj;if(t0)returnmij;if(i=j)return0;intu=lookupChain(i+1,j)+pi-1*pi*pj;sij=i;for(intk=i+1;kj;k+)intt=lookupChain(i,k)+lookupChain(k+1,j)+pi-1*pk*pj;if(tu)u=t;sij=k;mij=u;returnu;,95,最长公共子序列,若给定序列X=x1,x2,xm,则另一序列Z=z1,z2,zk,是X的子序列是指存在一个严格递增下标序列i1,i2,ik使得对于所有j=1,2,k有:zj=xij。例如,序列Z=B,C,D,B是序列X=A,B,C,B,D,A,B的子序列,相应的递增下标序列为2,3,5,7。给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。给定2个序列X=x1,x2,xm和Y=y1,y2,yn,找出X和Y的最长公共子序列。,96,最长公共子序列的结构,设序列X=x1,x2,xm和Y=y1,y2,yn的最长公共子序列为Z=z1,z2,zk,则(1)若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。(2)若xmyn且zkxm,则Z是xm-1和Y的最长公共子序列。(3)若xmyn且zkyn,则Z是X和yn-1的最长公共子序列。,由此可见,2个序列的最长公共子序列包含了这2个序列的前缀的最长公共子序列。因此,最长公共子序列问题具有最优子结构性质。,97,子问题的递归结构,由最长公共子序列问题的最优子结构性质建立子问题最优值的递归关系。用cij记录序列和的最长公共子序列的长度。其中,Xi=x1,x2,xi;Yj=y1,y2,yj。当i=0或j=0时,空序列是Xi和Yj的最长公共子序列。故此时Cij=0。其他情况下,由最优子结构性质可建立递归关系如下:,98,计算最优值,由于在所考虑的子问题空间中,总共有(mn)个不同的子问题,因此,用动态规划算法自底向上地计算最优值能提高算法的效率。,AlgorithmlcsLength(x,y,b)1:mx.length-1;2:ny.length-1;3:ci0=0;c0i=0;4:for(inti=1;i=cij-1)10:cij=ci-1j;11:bij=2;12:else13:cij=cij-1;14:bij=3;,构造最长公共子序列Algorithmlcs(inti,intj,charx,intb)if(i=0|j=0)return;if(bij=1)lcs(i-1,j-1,x,b);System.out.print(xi);elseif(bij=2)lcs(i-1,j,x,b);elselcs(i,j-1,x,b);,99,算法的改进,在算法lcsLength和lcs中,可进一步将数组b省去。事实上,数组元素cij的值仅由ci-1j-1,ci-1j和cij-1这3个数组元素的值所确定。对于给定的数组元素cij,可以不借助于数组b而仅借助于c本身在时间内确定cij的值是由ci-1j-1,ci-1j和cij-1中哪一个值所确定的。如果只需要计算最长公共子序列的长度,则算法的空间需求可大大减少。事实上,在计算cij时,只用到数组c的第i行和第i-1行。因此,用2行的数组空间就可以计算出最长公共子序列的长度。进一步的分析还可将空间需求减至O(min(m,n)。,100,凸多边形最优三角剖分,用多边形顶点的逆时针序列表示凸多边形,即P=v0,v1,vn-1表示具有n条边的凸多边形。若vi与vj是多边形上不相邻的2个顶点,则线段vivj称为多边形的一条弦。弦将多边形分割成2个多边形vi,vi+1,vj和vj,vj+1,vi。多边形的三角剖分是将多边形分割成互不相交的三角形的弦的集合T。给定凸多边形P,以及定义在由多边形的边和弦组成的三角形上的权函数w。要求确定该凸多边形的三角剖分,使得即该三角剖分中诸三角形上权之和为最小。,101,三角剖分的结构及其相关问题,一个表达式的完全加括号方式相应于一棵完全二叉树,称为表达式的语法树。例如,完全加括号的矩阵连乘积(A1(A2A3)(A4(A5A6)所相应的语法树如图(a)所示。凸多边形v0,v1,vn-1的三角剖分也可以用语法树表示。例如,图(b)中凸多边形的三角剖分可用图(a)所示的语法树表示。矩阵连乘积中的每个矩阵Ai对应于凸(n+1)边形中的一条边vi-1vi。三角剖分中的一条弦vivj,ij,对应于矩阵连乘积Ai+1:j。,102,最优子结构性质,凸多边形的最优三角剖分问题有最优子结构性质。事实上,若凸(n+1)边形P=v0,v1,vn-1的最优三角剖分T包含三角形v0vkvn,1kn-1,则T的权为3个部分权的和:三角形v0vkvn的权,子多边形v0,v1,vk和vk,vk+1,vn的权之和。可以断言,由T所确定的这2个子多边形的三角剖分也是最优的。因为若有v0,v1,vk或vk,vk+1,vn的更小权的三角剖分将导致T不是最优三角剖分的矛盾。,103,最优三角剖分的递归结构,定义tij,1i1时,2.1j(i)。此时,。故在这种情况下,N(i,j)=N(i-1,j),从而Size(i,j)=Size(i-1,j)。2.2j(i),(i,(i)MNS(i,j)。则对任意(t,(t)MNS(i,j)有ti且(t)T(S,b(1),设是作业集S在机器M2的等待时间为b(1)情况下的一个最优调度。则(1),(2),(n)是N的一个调度,且该调度所需的时间为a(1)+T(S,b(1)a(1)+T。这与是N的最优调度矛盾。故TT(S,b(1)。从而T=T(S,b(1)。这就证明了流水作业调度问题具有最优子结构的性质。,由流水作业调度问题的最优子结构性质可知,,112,Johnson不等式,对递归式的深入分析表明,算法可进一步得到简化。设是作业集S在机器M2的等待时间为t时的任一最优调度。若(1)=i,(2)=j。则由动态规划递归式可得:T(S,t)=ai+T(S-i,bi+maxt-ai,0)=ai+aj+T(S-i,j,tij)其中,,如果作业i和j满足minbi,ajminbj,ai,则称作业i和j满足Johnson不等式。,113,流水作业调度的Johnson法则,交换作业i和作业j的加工顺序,得到作业集S的另一调度,它所需的加工时间为T(S,t)=ai+aj+T(S-i,j,tji)其中,当作业i和j满足Johnson不等式时,有由此可见当作业i和作业j不满足Johnson不等式时,交换它们的加工顺序后,不增加加工时间。对于流水作业调度问题,必存在最优调度,使得作业(i)和(i+1)满足Johnson不等式。进一步还可以证明,调度满足Johnson法则当且仅当对任意i2n时,算法需要(n2n)计算时间。,117,算法改进,由m(i,j)的递归式容易证明,在一般情况下,对每一个确定的i(1in),函数m(i,j)是关于变量j的阶梯状单调不减函数。跳跃点是这一类函数的描述特征。在一般情况下,函数m(i,j)由其全部跳跃点惟一确定。如图所示。,对每一个确定的i(1in),用一个表pi存储函数m(i,j)的全部跳跃点。表pi可依计算m(i,j)的递归式递归地由表pi+1计算,初始时pn+1=(0,0)。,118,典型例子(一),n=3,c=6,w=4,3,2,v=5,2,1。,119,算法改进,函数m(i,j)是由函数m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论