




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
25.2.2用列举法求概率,人教版九年级数学上册,第二课时,练习题:在6张卡片上分别写有16的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?,二,一,解:列出所有可能的结果:,P(第二次取出的数字能够整除第一次取出的数字)=,复习,当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为了不重不漏的列出所有可能的结果,通常采用列表法.,一个因素所包含的可能情况,另一个因素所包含的可能情况,两个因素所组合的所有可能情况,即n,在所有可能情况n中,再找到满足条件的事件的个数m,最后代入公式计算.,列表法中表格构造特点:,当一次试验中涉及3个因素或更多的因素时,怎么办?,例题,例1同时抛掷三枚硬币,求下列事件的概率:(1)三枚硬币全部正面朝上;(2)两枚硬币正面朝上而一枚硬币反面朝上;(3)至少有两枚硬币正面朝上.,正,反,正,反,正,反,正,反,正,反,正,反,正,反,抛掷硬币试验,解:,由树形图可以看出,抛掷3枚硬币的结果有8种,它们出现的可能性相等.,P(A),(1)满足三枚硬币全部正面朝上(记为事件A)的结果只有1种,P(B),(2)满足两枚硬币正面朝上而一枚硬币反面朝上(记为事件B)的结果有3种,(3)满足至少有两枚硬币正面朝上(记为事件C)的结果有4种,P(C),第枚,当一次试验中涉及3个因素或更多的因素时,用列表法就不方便了.为了不重不漏地列出所有可能的结果,通常采用“树形图”.,树形图,树形图的画法:,一个试验,第一个因数,第二个,第三个,如一个试验中涉及3个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况;第三个因数中有2种可能的情况,A,B,1,2,3,1,2,3,a,b,a,b,a,b,a,b,a,b,a,b,则其树形图如图.,n=232=12,例2:甲口袋中装有2个相同的小球,它们分别写有字母A和B;乙口袋中装有3个相同的小球,它们分别写有字母C、D和E;丙口袋中装有2个相同的小球,它们分别写有字母H和I.从3个口袋中各随机地抽取1个小球。(1)取出的3个小球上恰好有1个、2个、和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?,分析:当一次试验要涉及3个或更多的因素(例如从3个口袋中取球)时,列方形表就不方便了,为不重不漏地列出所有可能结果,通常采用树形图。,解:根据题意,画出如下的“树形图”,甲,乙,丙,A,B,C,D,E,H,I,C,D,E,H,I,H,I,H,I,H,I,H,I,从树形图看出,所有可能出现的结果共有12个,ACH,ACI,ADH,ADI,AEH,AEI,BCH,BCI,BDH,BDI,BEH,BEI,(1)只有一个元音的字母的结果(红色)有5种,,有两个元音的字母的结果(绿色)有4种,,有三个元音的字母的结果(蓝色)有1种,,(2)全是辅音字母的结果(黑色)有2种,,例题,例3.甲、乙、丙三人打乒乓球.由哪两人先打呢?他们决定用“石头、剪刀、布”的游戏来决定,游戏时三人每次做“石头”“剪刀”“布”三种手势中的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”.问一次比赛能淘汰一人的概率是多少?,解:,由树形图可以看出,游戏的结果有27种,它们出现的可能性相等.,由规则可知,一次能淘汰一人的结果应是:“石石剪”“剪剪布”“布布石”三类.,而满足条件(记为事件A)的结果有9种,P(A)=,经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同。三辆汽车经过这个十字路口,求下列事件的概率:(1)三辆车全部继续直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左传。,练习,第一辆,左,右,左,右,左直右,第二辆,第三辆,直,直,左,右,直,左,右,直,左直右,左直右,左直右,左直右,左直右,左直右,左直右,左直右,共有27种行驶方向,解:画树形图如下:,(3)至少有两辆车向左传,有7种情况,即:,左左左,左左直,左左右,左直左,左右左,直左左,右左左。,想一想,(1)列表法和树形图法的优点是什么?(2)什么时候使用“列表法”方便?什么时候使用“树形图法”方便?,利用树形图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.当试验包含两步时,列表法比较方便,当然,此时也可以用树形图法;当试验在三步或三步以上时,用树形图法方便.,课堂小结,(一)等可能性事件的两的特征:1.出现的结果有限多个;2.各结果发生的可能性相等;,(二)列举法求概率1.有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目.2利用列举法求概率的关键在于正确列举出试验结果的各种可能性,而列举的方法通常有直接分类
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 不服从公司管理管理制度
- 地产公司企划部管理制度
- 原粮防参杂入厂管理制度
- 拆包原料保质期管理制度
- 学院危化品安全管理制度
- 国企计算机设备管理制度
- 外贸公司供应商管理制度
- 合肥中小学食品管理制度
- 2025年募投金融项目申请报告
- 2025年工程筒灯项目申请报告模板
- 痛风肾病的中医护理方案
- 2024年玉溪市事业单位招考及易考易错模拟试题(共500题)试卷后附参考答案
- 麻醉恢复室病人的护理
- 四川燃气用户安装检修工理论考试题及答案
- GB/T 44679-2024叉车禁用与报废技术规范
- 肺结核防治知识讲座课件
- 2024低压电力线高速载波通信互联互通技术规范第1部分:总则
- 抖音直播带货协议书模板
- 变电站-配电房挂轨巡检机器人技术方案
- 高职汽修专业《汽车电气设备维修》说课课件
- 香港(2024年-2025年小学二年级语文)统编版能力评测试卷(含答案)
评论
0/150
提交评论