




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第7章假设检验例题与习题,假设检验在统计方法中的地位,学习目标,了解假设检验的基本思想掌握假设检验的步骤对实际问题作假设检验利用置信区间进行假设检验利用P-值进行假设检验,双侧检验(原假设与备择假设的确定),属于决策中的假设检验不论是拒绝H0还是不拒绝H0,都必需采取相应的行动措施例如,某种零件的尺寸,要求其平均长度为10cm,大于或小于10cm均属于不合格我们想要证明(检验)大于或小于这两种可能性中的任何一种是否成立建立的原假设与备择假设应为H0:=10H1:10,单侧检验(原假设与备择假设的确定),将研究者想收集证据予以支持的假设作为备择假设H1例如,一个研究者总是想证明自己的研究结论是正确的一个销售商总是想正确供货商的说法是不正确的备择假设的方向与想要证明其正确性的方向一致将研究者想收集证据证明其不正确的假设作为原假设H0先确立备择假设H1,单侧检验(原假设与备择假设的确定),一项研究表明,采用新技术生产后,将会使产品的使用寿命明显延长到1500小时以上。检验这一结论是否成立研究者总是想证明自己的研究结论(寿命延长)是正确的备择假设的方向为“”(寿命延长)建立的原假设与备择假设应为H0:1500H1:1500,单侧检验(原假设与备择假设的确定),一项研究表明,改进生产工艺后,会使产品的废品率降低到2%以下。检验这一结论是否成立研究者总是想证明自己的研究结论(废品率降低)是正确的备择假设的方向为“”(废品率降低)建立的原假设与备择假设应为H0:2%H1:2%,单侧检验(原假设与备择假设的确定),某灯泡制造商声称,该企业所生产的灯泡的平均使用寿命在1000小时以上。如果你准备进一批货,怎样进行检验检验权在销售商一方作为销售商,你总是想收集证据证明生产商的说法(寿命在1000小时以上)是不是正确的备择假设的方向为“1200=0.05n=100临界值(s):,检验统计量:,在=0.05的水平上不拒绝H0,不能认为该厂生产的元件寿命显著地高于1200小时,决策:,结论:,【例】某机器制造出的肥皂厚度为5cm,今欲了解机器性能是否良好,随机抽取10块肥皂为样本,测得平均厚度为5.3cm,标准差为0.3cm,试以0.05的显著性水平检验机器性能良好的假设。,双侧检验,H0:=5H1:5=0.05df=10-1=9临界值(s):,检验统计量:,在=0.05的水平上拒绝H0,说明该机器的性能不好,决策:,结论:,(P值的计算与应用),第1步:进入Excel表格界面,选择“插入”下拉菜单第2步:选择“函数”点击,并在函数分类中点击“统计”,然后,在函数名的菜单中选择字符“TDIST”,确定第3步:在弹出的X栏中录入计算出的t值3.16在自由度(Deg-freedom)栏中录入9在Tails栏中录入2,表明是双侧检验(单测检验则在该栏内录入1)P值的结果为0.011550.025,拒绝H0,【例】一个汽车轮胎制造商声称,某一等级的轮胎的平均寿命在一定的汽车重量和正常行驶条件下大于40000公里,对一个由20个轮胎组成的随机样本作了试验,测得平均值为41000公里,标准差为5000公里。已知轮胎寿命的公里数服从正态分布,我们能否根据这些数据作出结论,该制造商的产品同他所说的标准相符?(=0.05),单侧检验!,均值的单尾t检验(计算结果),H0:40000H1:40000=0.05df=20-1=19临界值(s):,检验统计量:,在=0.05的水平上不拒绝H0,不能认为制造商的产品同他所说的标准不相符,决策:,结论:,总体比例的检验(Z检验),适用的数据类型,一个总体比例的检验(例题分析),【例】一项统计结果声称,某市老年人口(年龄在65岁以上)的比重为14.7%,该市老年人口研究会为了检验该项统计是否可靠,随机抽选了400名居民,发现其中有57人年龄在65岁以上。调查结果是否支持该市老年人口比重为14.7%的看法?(=0.05),双侧检验,一个总体比例的检验(例题分析),H0:=14.7%H1:14.7%=0.05n=400临界值(s):,检验统计量:,在=0.05的水平上不拒绝H0,该市老年人口比重为14.7%,决策:,结论:,总体方差的检验(2检验),方差的卡方(2)检验,检验一个总体的方差或标准差假设总体近似服从正态分布检验统计量,方差的卡方(2)检验(例题分析),【例】某厂商生产出一种新型的饮料装瓶机器,按设计要求,该机器装一瓶一升(1000cm3)的饮料误差上下不超过1cm3。如果达到设计要求,表明机器的稳定性非常好。现从该机器装完的产品中随机抽取25瓶,分别进行测定(用样本减1000cm3),得到如下结果。检验该机器的性能是否达到设计要求(=0.05),绿色健康饮品,绿色健康饮品,双侧检验,方差的卡方(2)检验(例题分析),H0:2=1H1:21=0.05df=25-1=24临界值(s):,统计量:,在=0.05的水平上不拒绝H0,不能认为该机器的性能未达到设计要求,决策:,结论:,假设检验中的其他问题,用置信区间进行检验单侧检验中假设的建立,用置信区间进行检验,用置信区间进行检验(双侧检验),求出双侧检验均值的置信区间,2已知时:,2未知时:,若总体的假设值0在置信区间外,拒绝H0,用置信区间进行检验(单侧检验),左侧检验:求出单边置信下限,若总体的假设值0小于单边置信下限,拒绝H0右侧检验:求出单边置信上限,若总体的假设值0大于单边置信上限,拒绝H0,用置信区间进行检验(例题分析),【例】一种袋装食品每包的标准重量应为1000克。现从生产的一批产品中随机抽取16袋,测得其平均重量为991克。已知这种产品重量服从标准差为50克的正态分布。试确定这批产品的包装重量是否合格?(=0.05),双侧检验!,香脆蛋卷,用置信区间进行检验(例题分析),H0:=1000H1:1000=0.05n=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公园园区门岗管理制度
- 漏水通病检修方案(3篇)
- DB62T 4400-2021 动物诊疗机构消毒技术规范
- 工业产权改造方案(3篇)
- 消防安全app课件
- 新房物业选聘方案(3篇)
- 易损件采购方案(3篇)
- 亭子设计安装方案(3篇)
- 监理专项巡查方案(3篇)
- 绿色环保储藏室使用权买卖合同
- 13J927-3 机械式停车库设计图册
- 中医治疗小儿遗尿
- 食品报废处理合作协议书
- 2022-2023学年广东省广州市番禺区八年级下学期期末数学试题及答案
- 建筑垃圾消纳处置场所运营管理方案
- 湖北省武汉市2025届高三一模英语试题试卷(官方答案版)解答题有过程含解析
- 《广义相对论初步》参考课件2
- 2024-2030年中国白啤酒行业市场发展趋势与前景展望战略分析报告
- 职业规划书-大数据与会计(三)
- 四川省南充市2024届中考物理试卷(含答案)
- 广东省中山市初中历史七年级期末下册高分试卷详细答案和解析
评论
0/150
提交评论