高考数学复习专题4.10:一道教材习题的研究与拓展_第1页
高考数学复习专题4.10:一道教材习题的研究与拓展_第2页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题4.10:一道教材习题的研究与拓展【课本溯源】如图,已知是定角,分别在的两边上,为定长,当处于什么位置时,的面积最大?【探究拓展】探究1:线段为定值的相关问题研究是定角,分别在的两边上,为定长,设,则: 当时,的面积有最大值;当时,的周长有最大值探究2:线段过定点的相关问题研究如图,已知为定值,,过定点引线段,分别交、于(1)求证:当即是线段中点时,的面积最小;(2)是以为顶点的等腰三角形时,截线段的乘积最小拓展1:海岸线,现用长为的拦网围成一养殖场,其中(1)若, 求养殖场面积最大值;(2)若、为定点,在折线内选点,使,求四边形养殖场DBAC的最大面积;(3)若(2)中B、C可选择,求四边形养殖场ACDB面积的最大值.解:(1)设,所以, 面积的最大值为,当且仅当时取到(2)设为定值) (定值) ,由,a =l,知点在以、为焦点的椭圆上,为定值只需面积最大,需此时点到的距离最大, 即必为椭圆短轴顶点 面积的最大值为,因此,四边形ACDB面积的最大值为(3)先确定点B、C,使. 由(2)知为等腰三角形时,四边形ACDB面积最大.确定BCD的形状,使B、C分别在AM、AN上滑动,且BC保持定值,由(1)知AB=AC时,四边形ACDB面积最大.此时,ACDABD,CAD=BAD=,且CD=BD=.来源:S=.由(1)的同样方法知,AD=AC时,三角形ACD面积最大,最大值为.所以,四边形ACDB面积最大值为.拓展2:如图所示,有两条道路与,现要铺设三条下水管道,(其中,分别在,上),若下水管道的总长度为,设,(1)求关于的函数表达式,并指出的取值范围;(2)已知点处有一个污水总管的接口,点到的距离为,到点的距离为,问下水管道能否经过污水总管的接口点?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论