




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,第七章空间解析几何与向量代数习题课,.,一、向量的基本概念,1向量的坐标:,2向量的模:,方向余弦为:,设起点和终点,则,3方向角:向量与三个坐标轴正向的夹角,向量代数,.,4单位向量:,5向量的投影:,二、向量的运算,1线性运算,(1),(2),2数量积,(1)定义:,(2)坐标表示:,.,分配律:,结合律:,(4)向量的夹角:,(5)性质:,2向量积,(1)定义:,(3)运算律:,交换律:,方向:垂直与确定的平面,且符合右手规则。,.,结合律:,(4)性质:,分配律:,反交换律:,(3)运算律:,(2)坐标表示:,.,一、平面与直线的方程,1平面方程:,(1)点法式方程:,(2)一般方程:,2点到平面的距离:,平面与直线、空间曲面与曲线,.,3直线方程:,(1)一般方程:,(2)对称式方程:,(3)参数方程:,.,则它们的夹角为:,(2)两平面相交(夹角),设与平面的法向量分别为与,4线、面之间的位置关系:,(1)两直线相交(夹角),设与的方向向量分别为与,.,(3)直线与平面相交(夹角),设直线的方向向量为,则,.,(4)线、面之间的平行与垂直,设直线与的方向向量分别为,,平面与的法向量分别为,.,二、空间曲面,1一般方程:,2旋转面:曲线,.,三、空间曲线,1一般方程,2参数方程,3空间曲线在坐标面上的投影曲线:,.,向量代数典型例题,解:,方向余弦为,方向角为,.,分析:向量相等的定义是向量坐标对应相等。,解:由已知条件得,易得,即当时两向量相等。,方向余弦为。,模为,此时向量为,.,【例3】已知都是单位向量,且满足,求.,解:,于是,.,解法1:,所以,.,解法2:因三向量两两垂直,故可在直角坐标系中设,则,于是,.,解:依题意有,即,解得,,与同向的单位向量为,则,.,分析:应用向量积构造与两个向量都垂直的向量;,利用向量积模的几何意义得平行四边形的面积。,解:,与同时垂直的单位向量为:,平行四边形面积,.,分析:先设出向量,再用两个条件确定其系数。,解:由已知条件,可设,由已知条件有,,则,于是,则,.,分析:先求出轴上的单位向量,再利用向量投影公式。,解:设轴的方向余弦分别为,,由已知条件,及,即轴上的正向单位向量为,,于是,得,所以,.,(1)为何值时,,分析:(1)用向量垂直的充分必要条件;,(2)用向量积的模的几何意义。,解:(1)当时,即,,亦即,时,故当,时。,.,(2)平行四边形面积,则,于是或,.,直线与平面典型例题,【例1】求平行于轴且经过两点的平面方程。,解法1:由已知点,确定向量,轴上的单位向量,可确定所求平面的法向量,.,平面过点,则所求平面的点法式方程为,即,解法2:平面平行于轴,则平面方程中不含变量,于是,可设平面方程为,点在平面上,满足平面方程,即有,.,,得,则平面方程为,即,分析:已知平面过两点,可采用平面的点法式,用已知两点确,定的向量与已知平面法向量的向量积可求出平面的法向量。,.,,平面过向量,所以,。,已知平面的法向量为,,因为,所以,可取,则所求平面的点法式方程为,即,解:设所求平面的法向量为,已知平面过点,.,【例3】过点且在三坐标轴上截距相等的平面方程。,分析:最简单的方法是利用平面的截距式方程,再用已知,的点确定三个相等的截距。,解:设所求平面的截距式方程为,,将已知点的坐标代入方程确定参数,有,所求平面的截距式方程为。,或写为一般式方程。,解得,.,分析:所求平面与已知平面平行,法向量相同,可先设出,平面方程的一般式,再由条件定系数。,解:所求平面与已知平面平行,两者的法向量相同,故可,设所求平面的方程为,已知平面上有点,该点到所求平面的的距离为3,即,可解得或,.,代入所设平面方程得所求平面的方程为,或,分析:直线过已知一点,由直线的对称式,只需求直线的,方向向量,直线的方向向量分别与两已知平面的法向量垂直,,可用向量积求出直线的方向向量。,.,可取,直线过点,则所求直线方程为,则,。,.,解之得。,分析:直线在平面上,则直线上的点都在平面上、直线,的方向向量与平面的法向量垂直。,.,求平面的法向量与两者分别垂直,平面的法向量可用向量积求得。,分析:直线上一点及已知点可确定一向量,直线有方向向量;所,解:直线上的点及已知点在所求平面上,,两点构成向量,直线方向向量;,所求平面方程为,即,所求平面的法向量,于是可取,.,分析:所求平面过直线,则过直线上点,由平面的点法式,,关键是求出平面的法向量,有两种方法:,(1)用向量积得出与两直线的方向向量都垂直的向量;,(2)先设出平面的法向量,再由条件定系数。,.,于是所求平面方程为,即,已知二直线的方向向量为、,,因为,平面过,所以,又因为,所以,则有,解得,取则。,平面方程为:,即,.,分析:关键是求出直线的方向向量,可用向量积求得。,从而直线与直线的夹角的余弦为,因此,.,.,从而所求直线的方程为,即,分析:要想求出点到直线的距离,需求过该点与已知直线垂直,相交的直线和已知直线的交点(即垂线足,或称为投影),,得出交点即可求出。,.,即,解:已知直线的方向向量为,.,化为参数方程为,将已知直线的参数方程代入,平面方程,得,则,故有交点,,因此所求的距离为,注:求点到直线距离、过一点作与已知直线垂直相交的直线、点在,直线上的投影等几种问题均为同一种类型题,解题过程基本相同。,.,分析:所求平面过点,由点法式方程,只需求出平面的,所求平面上,又交线上的一点与已知点所,向量。也可现设出所求平面的法向量,再由条件定其坐标。,又可利用过交线的平面束。,解法1:设两个平面的交线为,方向向量为,已知两平面,的法向量为,因为,.,点满足两已知平面方程,故该点在两平面交线上,,则所求平面的方程为,即,可取,.,解法2:同解法1交线的方向向量为,,设求平面的法向量为,则,,于是有,,得,取,则,则所求平面的方程为,即,.,解法3:过交线的平面束的方程是,即,可得,于是求平面的方程为,即,.,分析:应考虑过已知直线的平面束中有一个平面与已知平面垂直,平面束中该平面是直线的投影柱面。,解:过已知直线的平面束方程为,即,其法向量,平面束中有一个平面与已知平面垂直,,.,则两者的数量积为零,即,解得,则法向量为.,于是平面束中以此为法向量的平面方程为,即是直线的投影柱面。,则已知直线在已知平面上的投影为,.,解:过交线的平面束方程为,即,其法向量为,.,即,可得于是所求平面两个:,(1)时,有,即为已知平面。,(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2019-2025年心理咨询师之心理咨询师三级技能提升训练试卷B卷附答案
- 环境经济项目合同履行国际合作项目重点基础知识点归纳
- 环境灾害应急设施维护重点基础知识点归纳
- 环境教育跨文化研究重点基础知识点归纳
- 婴儿护理技巧与知识
- 玩转春节的游戏
- 头发渗透性的重要性
- 应急救援人员创伤后疏导
- 春节的寓意幼儿故事学习
- BIM与施工机器人结合的应用实例
- 移动基站物业协调方案
- 岩土锚杆技术规程课件
- 风寒感冒及风热感冒诊断及合理用药课件
- 第五版PFMEA编制作业指导书
- 文献整理表格
- VDA6.3过程审核检查表(中英文版)
- DBJ∕T 13-261-2017 福建省二次供水不锈钢水池(箱)应用技术规程
- 二手车评估作业表简单实际样本
- 物资出入库单模板
- 05示例:玉米脱粒机的设计(含全套CAD图纸)
- 北师大版小学数学五年级下册单元测试题含答案(全册)
评论
0/150
提交评论