已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.3支持向量机,支持向量机,一种线性和非线性数据有前途的新划分类方法。巧妙利用向量内积的回旋,通过将非线性核函数将问题变为高维特征空间与低维输入空间的相互转换,解决了数据挖掘中的维数灾难。由于计算问题最终转化为凸二次规划问题,因此挖掘算法是无解或有全局最优解。,支持向量机定义,所谓支持向量机,顾名思义,分为两个部分了解:一,什么是支持向量(简单来说,就是支持或支撑平面上把两类类别划分开来的超平面的向量点)二,这里的“机(machine,机器)”便是一个算法。在机器学习领域,常把一些算法看做是一个机器,如分类机(当然,也叫做分类器),而支持向量机本身便是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。,SVM的描述,目标:找到一个超平面,使得它能够尽可能多的将两类数据点正确的分开,同时使分开的两类数据点距离分类面最远。解决方法:构造一个在约束条件下的优化问题,具体的说是一个约束二次规划问题(constrainedquadraticprograming),求解该问题,得到分类器。,概述,1.线性可分情形,线性可分情形,最大边缘超平面(MMH)边缘:从超平面到其边缘的侧面的最短距离等于到其边缘的另一个侧面的最短距离,边缘侧面平行于超平面,分类面与边界距离(margin)的数学表示:,分类超平面表示为:,数学语言描述,.,一、线性可分的支持向量(分类)机,首先考虑线性可分情况。设有如下两类样本的训练集:,线性可分情况意味着存在超平面使训练点中的正类和负类样本分别位于该超平面的两侧。,如果能确定这样的参数对(w,b)的话,就可以构造决策函数来进行识别新样本。,线性可分的支持向量(分类)机,问题是:这样的参数对(w,b)有许多。解决的方法是采用最大间隔原则。,最大间隔原则:选择使得训练集D对于线性函数(wx)+b的几何间隔取最大值的参数对(w,b),并由此构造决策函数。,在规范化下,超平面的几何间隔为于是,找最大几何间隔的超平面表述成如下的最优化问题:,(1),.,线性可分的支持向量(分类)机,为求解问题(1),使用Lagrange乘子法将其转化为对偶问题。于是引入Lagrange函数:,其中,称为Lagrange乘子。,首先求Lagrange函数关于w,b的极小值。由极值条件有:,得到:,(2),(3),(4),.,线性可分的支持向量(分类)机,将(3)式代入Lagrange函数,并利用(4)式,则原始的优化问题转化为如下的对偶问题(使用极小形式):,这是一个凸二次规划问题有唯一的最优解,(5),求解问题(5),得。则参数对(w,b)可由下式计算:,线性可分的支持向量(分类)机,支持向量:称训练集D中的样本xi为支持向量,如果它对应的i*0。,根据原始最优化问题的KKT条件,有,于是,支持向量正好在间隔边界上,于是,得到如下的决策函数:,几何意义:超平面法向量是支持向量的线性组合。,几何意义,对于线性不可分的样本怎么办?,非线性可分情形,如何找到正确的分类曲线和正确的超平面对此类情况分类?,非线性可分情形,关键点:把xi变换到高维的特征空间为什么要变换?通过加入一个新的特征xi,使得样本变成线性可分的,此时特征空间维数变高Transformx(x),例子,ax12+bx22=1w1z1+w2z2+w3z3+b=0,设训练集,其中假定可以用平面上的二次曲线来划分:,现考虑把2维空间映射到6维空间的变换,上式可将2维空间上二次曲线映射为6维空间上的一个超平面:,非线性分类,可见,只要利用变换,把x所在的2维空间的两类输入点映射x所在的6维空间,然后在这个6维空间中,使用线性学习机求出分划超平面:,最后得出原空间中的二次曲线:,非线性分类,如何选择到较高维空间的非线性映射?给定的检验元组,必须计算与每个支持向量的点积,出现形如可以引入核函数(内积的回旋)来替代,需要求解的最优化问题,非线性分类,最后得到决策函数,或,为此,引进函数,实现非线性分类的思想,给定训练集后,决策函数仅依赖于而不需要再考虑非线性变换,如果想用其它的非线性分划办法,则可以考虑选择其它形式的函数,一旦选定了函数,就可以求解最优化问题,实现非线性分类的思想,其中,解得,而决策函数,目前研究最多的核函数主要有三类:,核函数的选择,几个典型的核函数,核的比较,现有5个一维数据x1=1,x2=2,x3=4,x4=5,x5=6,其中1,2,6为class1,4,5为class2y1=1,y2=1,y3=-1,y4=-1,y5=1选择polynomialkernelofdegree2K(x,y)=(xy+1)2C=100求解ai(i=1,5),例子,例子,通过二次规划求解,得到支持向量为x2=2,x4=5,x5=6判别函数为b满足f(2)=1,f(5)=-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合并高血压脑卒中社区阶梯式康复方案优化
- 可穿戴医疗设备的知识产权策略
- 2025江苏连云港市海州湾发展集团有限公司及子公司招聘20人公考前自测高频考点模拟试题附答案
- 2026年一级注册建筑师之建筑经济、施工与设计业务管理考试题库300道附参考答案(达标题)
- 受试者补偿方案的跨国伦理审查
- 2025年安徽江淮汽车集团股份有限公司招聘13人笔试参考题库附答案
- 发展中国家疾病防控的经济援助策略
- 压力应对理论下家属社会支持策略
- 2026年一级注册建筑师之建筑物理与建筑设备考试题库300道附完整答案(夺冠系列)
- 2026年试验检测师之交通工程考试题库300道及参考答案(综合卷)
- 2025江苏南京市市场监督管理局所属事业单位招聘工作人员6人考试历年真题汇编带答案解析
- 2025广东肇庆四会市建筑安装工程有限公司招聘工作人员考试参考题库带答案解析
- 2025贵州黔西南州水资源开发投资(集团)有限公司招聘3人备考题库有答案详解
- 第五单元国乐飘香(一)《二泉映月》课件人音版(简谱)初中音乐八年级上册
- 简约物业交接班管理制度
- 战略大单品课件
- 2025年安康杯知识竞赛题库及答案
- 2025年浙江省中考数学试卷(含答案)
- 北京市朝阳区2024-2025学年六年级上学期期末考试数学试题
- 食品安全风险管控清单(白酒生产)
- 2025年10月自考00051管理系统中计算机应用试题及答案含解析
评论
0/150
提交评论