


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.2双曲线的简单几何性质 第一课时【学习目标】理解并掌握双曲线的几何性质【重点难点】理解并掌握双曲线的几何性质【预习案】【导学提示】任务一:阅读教材52页,自主探究由椭圆的哪些几何性质出发,类比探究双曲线的几何性质?范围: : 对称性:双曲线关于 轴、 轴及 都对称顶点:( ),( )实轴,其长为 ;虚轴,其长为 离心率:渐近线:双曲线的渐近线方程为:问题:双曲线的几何性质?图形:范围: : 对称性:双曲线关于 轴、 轴及 都对称顶点:( ),( )实轴,其长为 ;虚轴,其长为 离心率:渐近线:双曲线的渐近线方程为: 新知:实轴与虚轴等长的双曲线叫 双曲线 【探究案】探究一:求双曲线的实半轴长、虚半轴的长、焦点坐标、离心率及渐近线的方程 变式:求双曲线的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程探究二:求双曲线的标准方程: 实轴的长是10,虚轴长是8,焦点在x轴上;离心率,经过点; 渐近线方程为,经过点 【训练案】1 双曲线实轴和虚轴长分别是( )A、 B、 C4、 D4、2双曲线的顶点坐标是( )A B C D()3 双曲线的离心率为( )A1 B C D24双曲线的渐近线方程是 5经过点,并且对称轴都在坐标轴上的等轴双曲线的方程是 6求焦点在轴上,焦距是16,的双曲线的标准方程7求与椭圆有公共焦点,且离心率的双曲线的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年四川省教师美术专业知识试卷
- 2025年物流师(中级)职业技能鉴定试卷:物流市场营销篇
- 大庆职业学院《人工智能原理与技术》2024-2025学年第一学期期末试卷
- 江西师范大学科学技术学院《医学细胞及分子生物学》2024-2025学年第一学期期末试卷
- 桂林山水职业学院《有限元分析与可靠性设计》2024-2025学年第一学期期末试卷
- 西安体育学院《环保设备与构筑物设计》2024-2025学年第一学期期末试卷
- 2025年高级会计师实务面试题
- 新疆财经大学《税法二》2024-2025学年第一学期期末试卷
- 2025年数据库开发与应用中级考试模拟题及解析
- 运用绘本对小班幼儿进行传统文化教育的现状研究
- 初中道德与法治教师培训
- 全过程工程造价咨询投标方案(技术方案)
- TCECA-G 0304-2024 数字化碳管理平台 总体框架
- 卫生法规-卫生法律法规概论-基本医疗卫生与健康促进法律制度
- 近几年大学英语四级词汇表(完整珍藏版)
- 2024-2030年中国稀土永磁电机行业市场发展分析及前景趋势与投资风险研究报告
- 一年级硬笔书法教学计划
- 架线导地线各种弧垂的含义及计算方法(附计算表格)彻底弄懂弧垂
- 疲劳影响量表(FIS)
- 电竞行业用户分析
- 建筑防火基础知识
评论
0/150
提交评论