




已阅读5页,还剩96页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,温度传感器,第一节概论第二节热电偶温度传感器第三节热敏电阻温度传感器第四节IC温度传感器第五节其他温度传感器,了解温度传感器的作用、地位、分类和发展趋势;掌握热电偶三定律及相关计算;掌握不同类型热敏电阻的特点及应用场合;了解集成温度传感器使用方法;了解其他温度传感器工作原理。,.,一、温度的基本概念,温度定义:一般来说,温度是反映物体冷热状态的物理量。分子物理学:温度反映了物体内部分子运动平均动能。分子运动越快,物体越热,温度越高;分子运动越慢,物体越冷,温度越低。这种现象被描述为一个物体的热势,或能量效应。温度的数值表示法叫做温标。,热力学温标国际实用温标摄氏温标华氏温标,第一节概论,.,1927年第七届国际计量大会确定为基本的温标。1954年,国际计量会议选定水的三相点为273.16,并以它的1/273.16定为一度。1960年第十一届国际计量大会规定热力学温度以开尔文为单位,简称“开”,用K表示。,热力学温标又称“开尔文温标”、“绝对温标”,由开尔文首先提出的。建立在热力学第二定律基础上,和测温质无关的理想温标。根据定义,两个热力学温度的比值等于在这两个温度之间工作的可逆热机与热源交换的热量的比值。根据热力学中的卡诺定理,如果在温度T1的热源与温度为T2的冷源之间实现了卡诺循环,则存在下列关系式,1热力学温标,Q1热源给予热机的传热量Q2热机传给冷源的传热量,.,为解决国际上温度标准的统一及实用问题,国际上协商决定,建立一种既能体现热力学温度(保证一定的准确度),又使用方便、容易实现的温标,即国际实用温标InternationalPracticalTemperatureScaleof1968(简称IPTS-68),又称国际温标。,2国际实用温标,摄氏温度的分度值与开氏温度分度值相同,即温度间隔1K=1。T0是在标准大气压下冰的融化温度,T0=273.15K。水的三相点温度比冰点高出0.01K。,1968年国际实用温标规定热力学温度是基本温度,用T表示,其单位是开尔文,符号为K。1K定义为水三相点热力学温度的1/273.16,水的三相点是指纯水在固态、液态及气态三项平衡时的温度和压力,热力学温标规定三相点温度为273.16K,这是建立温标的惟一基准点。,.,3摄氏温标,工程上最通用的温度标尺。摄氏温标是在标准大气压(即101325Pa)下将水的冰点与沸点中间划分一百个等份,每一等份称为摄氏一度(摄氏度),一般用小写字母t表示。与热力学温标单位开尔文并用。摄氏温标与国际实用温标温度之间的关系如下:,4华氏温标,国内用得较少,它规定在标准大气压下冰点温度为32华氏度,水的沸点为212华氏度,中间等分为180份,每一等份称为华氏一度,符号用,它和摄氏温度的关系如下:,T=t+273.15K,t=T-273.15,F=1.8t+32,t=5/9(F-32),.,.,规定各温度段所使用的标准仪器低温铂电阻温度计(13.81K273.15K,259.340);铂电阻温度计(273.15K903.89K,0630.74);铂铑-铂热电偶温度计(903.89K1337.58K,630.741104.43);光测温度计(1337.58K,1104.43以上)。国际实用开尔文温度与国际实用摄氏温度分别用符号T68和t68来区别(一般简写为T与t)。,.,二、温度传感器的特点与分类,物体的热胀冷缩;气体压力变化;电极的温度变化热电偶产生电动势;光电效应热电效应介电常数、导磁率的温度变化;物质的变色、融解;强性振动温度变化;热放射;热噪声。,1温度传感器的物理原理(11),.,物理特性与温度之间的关系要适中,并且容易检测和处理,且随温度呈线性变化;除温度以外,物理特性受其他因素影响较小;特性随时间变化要小;重复性好,没有滞后和老化;灵敏度高,坚固耐用,体积小,对检测对象的影响要小;机械性能好,耐化学腐蚀,耐热性能好;能大批量生产,价格便宜;无危险性,无公害等。,2.温度传感器应满足的条件(8),.,.,温度传感器分类(1),.,温度传感器分类(2),.,此外,还有微波温度传感器、噪声温度传感器、温度图温度传感器、热流计、射流测温计、核磁共振测温计、穆斯保尔效应测温计、约瑟夫逊效应测温计、低温超导转换测温计、光纤温度传感器等。这些温度传感器有的已获得应用,有的尚在研制中。,.,3.安测量方式分,接触式非接触式,接触式温度传感器:传感器直接与被测物体接触进行温度测量。由于被测物体的热量传递给传感器,降低了被测物体温度,特别是被测物体热容量较小时,测量精度较低。因此,应用的前提条件是被测物体的热容量要足够大。,非接触式温度传感器:利用被测物体热辐射发出的红外线,测量物体的温度,可进行遥测。制造成本较高,测量精度却比较低。优点是:不从被测物体上吸收热量;不会干扰被测对象的温度场;连续测量不会产生消耗;反应快。,.,1常用热电阻范围:-260850;精度:0.001。改进后可连续工作2000h,失效率小于1,使用期为10年。2管缆热电偶测温范围为-20500,最高上限为1000。,()接触式温度传感器,3陶瓷热电阻测量范围为200+500。4超低温热电阻两种碳电阻,可分别测量268.8253-272.9272.99的温度。5热敏电阻器适于在高灵敏度的微小温度测量场合。经济性好、价格便宜。,.,l辐射高温计用来测量1000以上高温。分四种:光学高温计、比色高温计、辐射高温计和光电高温计。2光谱高温计测温通用光谱高温计,测量范围为4006000,采用电子化自动跟踪系统,保证有足够准确的精度,进行自动测量。,(二)非接触式温度传感器,3超声波温度传感器特点是响应快(约为10ms左右),方向性强。目前国外有可测到2760的产品。4激光温度传感器适用于远程和特殊环境下的温度测量。如NBS公司用氦氖激光源做光反射计可测很高的温度,精度为1。美国麻省理工学院正在研制一种激光温度计,最高温度可达8000,专门用于核聚变研究。瑞士BrowaBorer研究中心用激光温度传感器可测几千开(K)的高温。,.,1超高温与超低温传感器,如+3000以上和250以下的温度传感器。2提高温度传感器的精度和可靠性。3研制家用电器、汽车及农畜业所需要的价廉的温度传感器。4发展新型产品,扩展和完善管缆热电偶与热敏电阻;发展薄膜热电偶;研究节省镍材和贵金属以及厚膜铂热电阻;研制系列晶体管测温元件、快速高灵敏型热电偶以及各类非接触式温度传感器。5发展适应特殊测温要求的温度传感器。6发展数字化、集成化和自动化的温度传感器。,(三)温度传感器的主要发展方向,.,热电偶(温差热电偶),温度测量中使用最普遍的传感元件。特点:结构简单,测量范围宽、准确度高、热惯性小;输出信号为电信号,便于远传或信号转换;能用来测量流体的温度、测量固体以及固体壁面的温度;微型热电偶还可用于快速及动态温度的测量。,第二节热电偶温度传感器,热电偶的工作原理热电偶回路的性质热电偶的常用材料与结构冷端处理及补偿热电偶的选择、安装使用和校验,.,两种不同的导体或半导体A和B组合成如图所示闭合回路,若导体A和B的连接处温度不同(设TT0),则在此闭合回路中将有电流产生,也就是说回路中有电动势存在,这种现象叫做热电效应。这种现象在1821年由西拜克(Seeback)发现,所以又称西拜克效应。,一、热电偶的工作原理,回路中所产生的电动势,叫热电势。热电势由两部分组成,即温差电势和接触电势。,热端,冷端,.,1.接触电势,eAB(T)导体A、B结点在温度T时形成的接触电动势;e单位电荷,e=1.610-19C;k波尔兹曼常数,k=1.3810-23J/K;NA、NB导体A、B在温度为T时的电子密度。,接触电势的大小与温度高低及导体中的电子密度有关。,.,A,eA(T,To),To,T,eA(T,T0)导体A两端温度为T、T0时形成的温差电动势;T,T0高低端的绝对温度;A汤姆逊系数,表示导体A两端的温度差为1时所产生的温差电动势,例如在0时,铜的=2V/。,2.温差电势,温差电势原理图,.,由导体材料A、B组成的闭合回路,其接点温度分别为T、T0,如果TT0,则必存在着两个接触电势和两个温差电势,回路总电势:,T0,T,eAB(T),eAB(T0),eA(T,T0),eB(T,T0),A,B,3.回路总电势,NAT、NAT0导体A在结点温度为T和T0时的电子密度;NBT、NBT0导体B在结点温度为T和T0时的电子密度;A、B导体A和B的汤姆逊系数。,.,根据电磁场理论得,结论(4点):,EAB(T,T0)=EAB(T)-EAB(T0)=f(T)-C=g(T),由于NA、NB是温度的单值函数,在工程应用中,常用实验的方法得出温度与热电势的关系并做成表格,以供备查。由公式可得:,EAB(T,T0)=EAB(T)-EAB(T0)=EAB(T)-EAB(0)-EAB(T0)-EAB(0)=EAB(T,0)-EAB(T0,0),热电偶的热电势,等于两端温度分别为T和零度以及T0和零度的热电势之差。,.,导体材料确定后,热电势的大小只与热电偶两端的温度有关。如果使EAB(T0)=常数,则回路热电势EAB(T,T0)就只与温度T有关,而且是T的单值函数,这就是利用热电偶测温的原理。,只有当热电偶两端温度不同,热电偶的两导体材料不同时才能有热电势产生。,热电偶回路热电势只与组成热电偶的材料及两端温度有关;与热电偶的长度、粗细无关。,只有用不同性质的导体(或半导体)才能组合成热电偶;相同材料不会产生热电势,因为当A、B两种导体是同一种材料时,ln(NA/NB)=0,也即EAB(T,T0)=0。,.,对于有几种不同材料串联组成的闭合回路,接点温度分别为T1、T2、Tn,冷端温度为零度的热电势。其热电势为E=EAB(T1)+EBC(T2)+ENA(Tn),由一种均质导体组成的闭合回路,不论其导体是否存在温度梯度,回路中没有电流(即不产生电动势);反之,如果有电流流动,此材料则一定是非均质的,即热电偶必须采用两种不同材料作为电极。,二、热电偶回路的性质,1.均质导体定律,.,E总=EAB(T)+EBC(T)+ECA(T)=0,三种不同导体组成的热电偶回路,2.中间导体定律,一个由几种不同导体材料连接成的闭合回路,只要它们彼此连接的接点温度相同,则此回路各接点产生的热电势的代数和为零。,如图,由A、B、C三种材料组成的闭合回路,则,.,结论:l)将第三种材料C接入由A、B组成的热电偶回路,如图,则图a中的A、C接点2与C、A的接点3,均处于相同温度T0之中,此回路的总电势不变,即同理,图b中C、A接点2与C、B的接点3,同处于温度T0之中,此回路的电势也为:,T2,T1,Aa,B,C,2,3,EABa,A,T0,2,3,A,B,EAB,T1,T2,C,T0,EAB(T1,T2)=EAB(T1)-EAB(T2),(a),(b),T0,T0,EAB(T1,T2)=EAB(T1)-EAB(T2),第三种材料接入热电偶回路图,.,E,T0,T0,T,E,T0,T1,T1,T,电位计接入热电偶回路,根据上述原理,可以在热电偶回路中接入电位计E,只要保证电位计与连接热电偶处的接点温度相等,就不会影响回路中原来的热电势,接入的方式如下图所示。,.,3.中间温度定律,如果不同的两种导体材料组成热电偶回路,其接点温度分别为T1、T2(如图所示)时,则其热电势为EAB(T1,T2);当接点温度为T2、T3时,其热电势为EAB(T2,T3);当接点温度为T1、T3时,其热电势为EAB(T1,T3),则,EAB(T1,T3)=EAB(T1,T2)+EAB(T2,T3),.,EAB(T1,T3)=EAB(T1,0)+EAB(0,T3)=EAB(T1,0)EAB(T3,0)=EAB(T1)EAB(T3),A,B,T1,T2,T2,A,B,T0,T0,热电偶补偿导线接线图,E,对于冷端温度不是零度时,热电偶如何分度的问题提供了依据。如当T2=0时,则:,只要T1、T0不变,接入AB后不管接点温度T2如何变化,都不影响总热电势。这便是引入补偿导线原理。,EAB=EAB(T1)EAB(T0),说明:当在原来热电偶回路中分别引入与导体材料A、B同样热电特性的材料A、B(如图)即引入所谓补偿导线时,当EAA(T2)=EBB(T2),则回路总电动势为,.,热电偶材料应满足:物理性能稳定,热电特性不随时间改变;化学性能稳定,以保证在不同介质中测量时不被腐蚀;热电势高,导电率高,且电阻温度系数小;便于制造;复现性好,便于成批生产。,三、热电偶的常用材料与结构,.,1铂铑铂热电偶工业用热电偶丝:0.5mm。正极:铂铑合金丝,用90铂和10铑(重量比)冶炼而成。负极:铂丝。测量温度:长期:1300、短期:1600。特点:材料性能稳定,测量准确度较高;可做成标准热电偶或基准热电偶。用途:实验室或校验其它热电偶。测量温度较高,一般用来测量1000以上高温。在高温还原性气体中(如气体中含Co、H2等)易被侵蚀,需要用保护套管。材料属贵金属,成本较高。热电势较弱。,(一)热电偶常用材料,.,铂铑铂热电偶,.,2镍铬镍硅(镍铝)热电偶工业用热电偶丝:1.22.5mm,实验室用可细些。正极:镍铬合金(用88.489.7镍、910铬,0.6硅,0.3锰,0.40.7钴冶炼而成)。负极:镍硅合金(用95.797镍,23硅,0.40.7钴冶炼而成)。测量温度:长期:1000,短期:1300。特点:价格比较便宜,在工业上广泛应用。高温下抗氧化能力强,在还原性气体和含有SO2,H2S等气体中易被侵蚀。复现性好,热电势大。,.,3镍铬考铜热电偶工业用热电偶丝:1.22mm,实验室用可更细些。正极:镍铬合金负极:考铜合金(用56铜,44镍冶炼而成)。测量温度:长期:600,短期:800。特点:价格比较便宜,工业上广泛应用。在常用热电偶中它产生的热电势最大。气体硫化物对热电偶有腐蚀作用。考铜易氧化变质,适于在还原性或中性介质中使用。,.,4铂铑30铂铑6热电偶正极:铂铑合金(用70铂,30铑冶炼而成)。负极:铂铑合金(用94铂,6铑冶炼而成)。测量温度:长时间可到1600,短期可达1800。特点:材料性能稳定,测量精度高。还原性气体中易被侵蚀。低温热电势极小,冷端温度在50以下可不加补偿。成本高。,.,(6)铜康铜热电偶热电偶的热电势略高于镍铬-镍硅热电偶,约为43V/。复现性好,稳定性好,精度高,价格便宜。缺点是铜易氧化,广泛用于-250200的低温实验室测量中。,(5)铁康铜热电偶灵敏度高,约为53V/,线性度好,价格便宜,可在800以下的还原介质中使用。主要缺点是铁极易氧化,采用发蓝处理后可提高抗锈蚀能力。,.,几种持殊用途的热电偶(1)铱和铱合金热电偶如铱50铑铱10钌热电偶它能在氧气环境中测量高达2100的高温。(2)钨铼热电偶是60年代发展起来的,目前一种较好的高温热电偶,可使用在真空惰性气体介质或氢气介质中,但高温抗氧能力差。国产钨铼-钨铼20热电偶使用温度范围3002000,分度精度为1。(3)金铁镍铬热电偶主要用在低温测量,可在2273K范围内使用,灵敏度约为10V/。(4)钯铂铱15热电偶是一种高输出性能的热电偶,在1398时的热电势为47.255mV,比铂铂铑10热电偶在同样温度下的热电势高出3倍,因而可配用灵敏度较低的指示仪表,常应用于航空工业。,.,(二)常用热电偶的结构类型1工业用热电偶下图为典型工业用热电偶结构示意图。它由热电偶丝4、绝缘套管3、保护套管2以及接线盒1等部分组成。实验室用时,也可不装保护套管,以减小热惯性。,.,2铠装式热电偶(又称套管式热电偶),优点是小型化(直径从12mm到0.25mm)、寿命长、热惯性小,使用方便。测温范围在1100以下的有:镍铬镍硅、镍铬考铜铠装式热电偶。,断面如图所示。它是由热电偶丝、绝缘材料,金属套管三者拉细组合而成一体。又由于它的热端形状不同,可分为四种型式如图。,图3.2-12铠装式热电偶断面结构示意图1金属套管;2绝缘材料;3热电极(a)碰底型;(b)不碰底型;(c)露头型;(d)帽型,.,铠装式热电偶(又称套管式热电偶),.,3快速反应薄膜热电偶用真空蒸镀方法使两种热电极材料蒸镀到绝缘板上而成,热接点极薄(0.010.lm),4,1,2,3,快速反应薄膜热电偶1热电极;2热接点;3绝缘基板;4引出线。,特别适用于对壁面温度的快速测量。安装时,用粘结剂将它粘结在被测物体壁面上。目前我国试制的有铁镍、铁康铜和铜康铜三种,尺寸为6060.2mm;绝缘基板用云母、陶瓷片、玻璃及酚醛塑料纸等;测温范围在300以下;反应时间仅为几ms。,.,4快速消耗微型热电偶可以测量钢水温度。直径为0.050.lmm的铂铑10一铂铑30热电偶装在U型石英管中,再铸以高温绝缘水泥,外面再用保护钢帽所组成。这种热电偶使用一次就焚化,但它的优点是热惯性小,只要注意它的动态标定,测量精度可达土57。,1,4,2,3,5,6,7,8,9,11,10,快速消耗微型1刚帽;2石英;3纸环;4绝热泥;5冷端;6棉花;7绝缘纸管;8补偿导线;9套管;10塑料插座;11簧片与引出线,.,方法(6)冰点槽法计算修正法补正系数法零点迁移法冷端补偿器法软件处理法,四、冷端处理及补偿,原因热电偶热电势的大小是热端温度和冷端的函数差,为保证输出热电势是被测温度的单值函数,必须使冷端温度保持恒定;热电偶分度表给出的热电势是以冷端温度0为依据,否则会产生误差。,.,1.冰点槽法把热电偶的参比端置于冰水混合物容器里,使T0=0。这种办法仅限于科学实验中使用。为了避免冰水导电引起两个连接点短路,必须把连接点分别置于两个玻璃试管里,浸入同一冰点槽,使相互绝缘。,mV,A,B,A,B,T,C,C,仪表,铜导线,试管,补偿导线,热电偶,冰点槽,冰水溶液,四、冷端处理及补偿,T0,.,2.计算修正法用普通室温计算出参比端实际温度TH,利用公式计算例用铜-康铜热电偶测某一温度T,参比端在室温环境TH中,测得热电动势EAB(T,TH)=1.999mV,又用室温计测出TH=21,查此种热电偶的分度表可知,EAB(21,0)=0.832mV,故得EAB(T,0)=EAB(T,21)+EAB(21,T0)=1.999+0.832=2.831(mV)再次查分度表,与2.831mV对应的热端温度T=68。,注意:既不能只按1.999mV查表,认为T=49,也不能把49加上21,认为T=70。,EAB(T,T0)=EAB(T,TH)+EAB(TH,T0),.,3.补正系数法把参比端实际温度TH乘上系数k,加到由EAB(T,TH)查分度表所得的温度上,成为被测温度T。用公式表达即式中:T被测温度;T参比端在室温下热电偶电势与分度表上对应的某个温度;TH室温;k为修正系数。例用铂铑10铂热电偶测温,已知冷端温度TH=35,这时热电动势为11.348mV查热电偶的分度表,得出与此相应的温度T=1150。再从下表中查出,对应于1150的修正系数k=0.53。于是,被测温度T=1150+0.5335=1168.3()方法简单,比计算修正法误差可能大一点,但不大于0.14。,TTkTH,.,.,例用动圈仪表配合热电偶测温时,把仪表的机械零点调到室温TH的刻度上,在热电动势为零时,指针指示的温度值并不是0而是TH。而热电偶的冷端温度已是TH,则只有当热端温度T=TH时,才能使EAB(T,TH)=0,这样,指示值就和热端的实际温度一致了。这种办法非常简便。,4.零点迁移法,应用领域:如果冷端不是0,但十分稳定(如恒温车间或有空调的场所)。,方法:在测量结果中人为地加一个恒定值,因为冷端温度稳定不变,电动势EAB(TH,0)是常数,利用指示仪表上调整零点的办法,加大某个适当的值而实现补偿。,.,5.冷端补偿器法利用不平衡电桥补偿热电偶因冷端温度变化而引起的误差。不平衡电桥由R1、R2、R3(锰铜丝绕制)、RCu(铜丝绕制)四个桥臂和桥路电源组成。设计时,在0下使电桥平衡(R1=R2=R3=RCu),此时Uab=0,电桥对仪表读数无影响。,冷端补偿器的作用,注意:桥臂RCu必须和热电偶的冷端靠近,使处于同一温度之下。,mV,EAB(T,T0),T0,T0,T,A,B,+,+,-,a,b,U,Uab,RCu,R1,R2,R3,R,供电4V直流,在040或-2020的范围起补偿作用。注意,不同材质的热电偶所配的冷端补偿器,其中的限流电阻R不一样,互换时必须重新调整。,.,6.软件处理法对于计算机系统,不必全靠硬件进行热电偶冷端处理。例如冷端温度恒定但不为0的情况,只需在采样后加一个与冷端温度对应的常数。对于T0经常波动的情况,可利用热敏电阻或其它传感器把T0信号输入计算机,按照运算公式设计一些程序,便能自动修正。如果多个热电偶的冷端温度不相同,需要分别采样,若占用的通道数太多,可利用补偿导线把所有的冷端接到同一温度处,只用一个冷端温度传感器和一个修正T0的输入通道就可以了。,.,1.热电偶的选择、安装使用热电偶的选用应根据被测介质的温度、环境、介质性质、测温时间长短来选择热电偶和保护套管。安装地点要有代表性。安装方法要正确,下图是安装在管道上常用的两种方法。热电偶常与毫伏计连用,或与电子电位差计联用,后者精度较高,且能自动记录。另外也可,通过与温度变送器经放大后再接指示仪表,或作为控制用的信号。,五、热电偶的选择、安装使用和校验,.,2.热电偶的定期校验校验的方法是用标准热电偶与被校验热电偶装在同一校验炉中进行对比,误差超过规定允许值为不合格。最佳校验方法可由查阅有关标准获得。工业热电偶的允许偏差,见下表。工业热电偶允许偏差,.,热电偶校验图1-调压变压器;2-管式电炉;3标准热电偶;4-被校热电偶;5-冰瓶;6-切换开关;7-测试仪表;8-试管,.,热敏电阻:利用半导体材料的电阻率随温度变化而改变的性质制成的。在温度传感器中应用最多的有热电偶、热电阻(如铂、铜电阻温度计等)和热敏电阻。热敏电阻发展最为迅速,由于其性能得到不断改进,稳定性已大为提高,在许多场合下(-40350)热敏电阻已逐渐取代传统的温度传感器。主要内容:热敏电阻的特点、分类,基本参数,主要特性和应用等。,热敏电阻温度传感器,.,(一)热敏电阻的特点1电阻温度系数范围宽有正、负温度系数和在某一特定温度区域内阻值突变(开关型热敏电阻)的三种热敏电阻元件。电阻温度系数的绝对值比热电阻大10100倍左右。2材料加工容易、性能好可根据使用要求加工成各种形状,特别是能够做到小型化。目前,最小的珠状热敏电阻直径仅为0.2mm。3阻值在110M之间可供自由选择使用时,一般可不必考虑线路引线电阻的影响;由于其功耗小、故不需采取冷端温度补偿,所以适合于远距离测温和控温使用。,一、热敏电阻的特点与分类,.,4稳定性好商品化产品已有30多年历史,加之近年在材料与工艺上不断得到改进。最新的研究成果:在0.01的小温度范围内,其测量精度可达0.0002,相比之下,优于其它各种温度传感器。5原料资源丰富,价格低廉烧结表面均已经玻璃封装。故可用于较恶劣环境条件;另外由于热敏电阻材料的迁移率很小,故其性能受磁场影响很小,这是十分可贵的特点。,.,热敏电阻的种类很多,分类方法也不相同。按热敏电阻的阻值与温度之间的关系可分为:1正温度系数热敏电阻(PTC)电阻值随温度升高而增大,简称PTC热敏电阻。主要材料是掺杂的BaTiO3半导体陶瓷。2负温度系数热敏电阻(NTC)电阻值随温度升高而下降,简称NTC热敏电阻。材料主要是一些过渡金属氧化物半导体陶瓷。3突变型负温度系数热敏电阻器(CTR)电阻值在某特定温度范围内随温度升高而降低34个数量级,即具有很大负温度系数。其主要材料是VO2并添加一些金属氧化物。,(二)热敏电阻的分类,.,热敏电阻材料的分类(1),.,热敏电阻材料的分类(2),.,标称电阻R25(冷阻)热敏电阻在250.2时的阻值。,二、热敏电阻的基本参数,2.材料常数BN表征负温度系数(NTC)热敏电阻材料的物理特性常数。BN值决定于材料的激活能E,具有BN=E/2k的函数关系,式中k为波尔兹曼常数。一般BN值越大,则电阻值越大,绝对灵敏度越高。在工作温度范围内,BN值并不是一个常数,而是随温度的升高略有增加的。,电阻温度系数(%/)温度变化1时电阻值的变化率。,4.耗散系数H温度变化1所耗散的功率变化量。在工作范围内,当环境温度变化时,H值随之变化,其大小与热敏电阻的结构、形状和所处介质的种类及状态有关。,.,最高工作温度Tmax在规定的技术条件下长期连续工作所允许的最高温度:T0环境温度;PE环境温度为T0时的额定功率;H耗散系数7.最低工作温度Tmin在规定的技术条件下能长期连续工作的最低温度。8.转变点温度Tc电阻一温度特性曲线上的拐点温度,主要指正电阻温度系数热敏电阻和临界温度热敏电阻。,5.时间常数热敏电阻器在零功率测量状态下,当环境温度突变时,电阻器的温度变化量从开始到最终变量的63.2所需的时间。它与热容量C和耗散系数H之间的关系,.,9.额定功率PE在规定的条件下,长期连续负荷工作所允许的消耗功率。在此功率下,它自身温度不应超过Tmax。10.测量功率P0在规定的环境温度下,受到测量电流加热而引起的电阻值变化不超过0.1时所消耗的功率。11.工作点电阻RG在规定的温度和正常气候条件下,施加一定的功率后使电阻器自热而达到某一给定的电阻值。,12.工作点耗散功率PG电阻值达到RG时所消耗的功率。UG电阻器达到热平衡时的端电压。,.,13.功率灵敏度KG在工作点附近消耗功率lmW时所引起电阻的变化,即:在工作范围内,KG随环境温度的变化略有改变。14.稳定性在各种气候、机械、电气等使用环境中,保持原有特性的能力。它可用热敏电阻器的主要参数变化率来表示。最常用的是以电阻值的年变化率或对应的温度变化率来表示。,KGR/P,15.标称电压稳压热敏电阻器在规定温度下,标称工作电流所对应的电压值。16.元件尺寸指热敏电阻器的截面积A、电极间距离L和直径d。,.,(一)热敏电阻器的电阻温度特性(RTT),1,2,3,4,铂丝,40,60,120,160,0,100,101,102,103,104,105,106,RT/,温度T/C,热敏电阻的电阻-温度特性曲线1-NTC;2-CTR;3-4PTC,三、热敏电阻器主要特性,TT与RTT特性曲线一致。,.,RT、RT0温度为T、T0时热敏电阻器的电阻值;BNNTC热敏电阻的材料常数。测试结果表明,不管是氧化物材料,还是单晶体材料制成的NTC热敏电阻器,在不太宽的温度范围(小于450),都能利用该式,它是一个经验公式。,1负电阻温度系数(NTC)热敏电阻器的温度特性,NTC的电阻温度关系的一般数学表达式为:,如果以lnRT、1/T分别作为纵坐标和横坐标,则上式是一条斜率为BN,通过点(1/T0,lnRT0)的一条直线,如图。,.,材料的不同或配方的比例和方法不同,则BN也不同。用lnRT1/T表示负电阻温度系数热敏电阻温度特性,在实际应用中比较方便。,.,为了使用方便,常取环境温度为25作为参考温度(即T0=25),则NTC热敏电阻器的电阻温度关系式:,RT/R25BN关系如下表。,.,RTR25BN系数表,.,2.正电阻温度系数(PTC)热敏电阻器的电阻温度特性,10000,1000,100,10,0,50,100,150,200,250,R20=120,R20=36.5,R20=12.2,PTC热敏电阻器的电阻温度曲线,T/C,电阻/,Tp1,Tp2,Tc=175C,.,PTC热敏电阻的工作温度范围较窄,在工作区两端,电阻温度曲线上有两个拐点:Tp1和Tp2。当温度低于Tp1时,温度灵敏度低;当温度升高到Tp1后,电阻值随温度值剧烈增高(按指数规律迅速增大);当温度升到Tp2时,正温度系数热敏电阻器在工作温度范围内存在温度Tc,对应有较大的温度系数。实验证实:在工作温度范围内,正温度系数热敏电阻器的电阻温度特性可近似用下面的实验公式表示:式中RT、RT0温度分别为T、T0时的电阻值;BP正温度系数热敏电阻器的材料常数。若对上式取对数,则得:,以lnRT、T分别作为纵坐标和横坐标,便得到下图。,.,可见:正温度系数热敏电阻器的电阻温度系数tp,正好等于它的材料常数BP的值。,lnRr1,lnRr2,BP,mR,BP=tg=mR/mr,T1,T2,lnRr0,mr,lnRTT表示的PTC热敏电阻器电阻温度曲线,lnRr,T,若对上式微分,可得PTC热敏电阻的电阻温度系数tp,.,(二)热敏电阻的伏安特性(UI)伏安特性表示加在其两端的电压和通过的电流,在热敏电阻器和周围介质热平衡(即加在元件上的电功率和耗散功率相等)时的互相关系。1.负温度系数(NTC)热敏电阻器的伏安特性,该曲线是在环境温度为T0时的静态介质中测出的静态UI曲线。,热敏电阻的端电压UT和通过它的电流I有如下关系:,T0环境温度;T热敏电阻的温升。,.,曲线见下图,它与NTC热敏电阻器一样,曲线的起始段为直线,其斜率与热敏电阻器在环境温度下的电阻值相等。这是因为流过电阻器电流很小时,耗散功率引起的温升可以忽略不计的缘故。当热敏电阻器温度超过环境温度时,引起电阻值增大,曲线开始弯曲。,PTC热敏电阻器的静态伏安特性,2正温度系数(PTC)热敏电阻器的伏安特性,当电压增至Um时,存在一个电流最大值Im;如电压继续增加,由于温升引起电阻值增加速度超过电压增加的速度,电流反而减小,即曲线斜率由正变负。,.,(三)功率-温度特性(PTT)描述热敏电阻的电阻体与外加功率之间的关系,与电阻器所处的环境温度、介质种类和状态等相关。(四)热敏电阻器的动态特性电阻值的变化完全是由热现象引起的。因此,它的变化必然有时间上的滞后现象。这种电阻值随时间变化的特性,叫做热敏电阻器的动态特性。动态特性种类:,周围温度变化所引起的加热特性;周围温度变化所引起的冷却特性;热敏电阻器通电加热所引起的自热特性。,.,当热敏电阻器由温度T0增加到Tu时,其电阻值RTr随时间t的变化规律为:式中RTt时间为t时,热敏电阻的阻值;T0环境温度;Tu介质温度(TuT0);RTa温度Ta时,热敏电阻器的电阻值;t时间。当热敏电阻由温度Tu冷却T0时,其电阻值RTt与时间的关系为:,.,温度检测用的各种热敏电阻器探头1热敏电阻;2铂丝;3银焊;4钍镁丝;5绝缘柱;6玻璃,(二)测温用的热敏电阻器1、各种热敏电阻传感器结构,.,2、测表面电阻用的热敏电阻器安装方法图为测表面温度用的热敏电阻器的各种安装方式。,.,原理:利用半导体PN结的电流电压与温度有关的特性。优点:输出线性好、测量精度高,传感驱动电路、信号处理电路与温度传感部分集成在一起,因而封装后的组件体积非常小,使用方便,价格便宜,故在测温技术中越来越得到广泛应用。介绍IC温度传感器的类型、基本原理、主要特性及其应用等有关问题。,第四节IC温度传感器,.,一、IC温度传感器的分类,电压型IC温度传感器;电流型IC温度传感器,数字输出型IC温度传感器。,电流型IC温度传感器是把线性集成电路和与之相容的薄膜工艺元件集成在一块芯片上,再通过激光修版微加工技术,制造出性能优良的测温传感器。传感器的输出电流正比于热力学温度,即1A/K;其次,因电流型输出恒流,所以传感器具有高输出阻抗。其值可达10M。这为远距离传输深井测温提供了一种新型器件。,电压型IC温度传感器是将温度传感器基准电压、缓冲放大器集成在同一芯片上,制成一四端器件。因器件有放大器;故输出电压高、线性输出为10mV/;另外,由于其具有输出阻抗低的特性;抗干扰能力强,故不适合长线传输。这类IC温度传感器特别适合于工业现场测量。,.,电流型IC温度传感器的测温原理:晶体管PN结随温度变化而产生漂移。利用PN结的温漂特性来测量温度,研制成半导体温度传感元件。经过精心设计而制造出来的集成化线性较好的温度传感器件。利用电流I与Tk的正比关系,通过电流的变化来测量温度的大小。,二、IC温度传感器的测温原理,.,(一)电压输出型集成温度传感器AN6701S:日本松下公司生产的电压输出型集成温度传感器,它有四个引脚,三种连线方式:(a)正电源供电,(b)负电源供电,(c)输出极性颠倒。电阻RC用来调整25下的输出电压,使其等于5V,RC的阻值在330k范围内。这时灵敏度可达109110mV/,在-1080范围内基本误差不大于1。,输出,AN6701,(a),1,2,4,3,RC,515V,AN6701,输出,(c),10k,RC,3,1,2,4,515V,-,+,+,100k,10k,100k,AN6701,(b),2,1,3,输出,4,515V,RC,三、IC温度传感器的主要特性,.,输出电压/V,0,2,4,6,8,10,12,20,0,20,40,60,80,RC=100k,RC=10k,RC=1k,温度/C,AN6701的输入特性,在-1080范围内,RC的值与输出特性的关系如下图。AN6701有很好的线性,非线性误差不超过0.5%。若在25时借助RC将输出电压调整到5V,则RC的值约在330k间,相应的灵敏度为109110mV/。校准后,在-1080范围内,基本误差不超过1。这种集成,传感器在静止空气中的时间常数为24s,在流动空气中为11s。电源电压在515V间变化,整个集成电路的电流值一般为0.4mA,最大不超过0.8mA(RL=时)。,.,(二)电流型温度传感器1伏安特性工作电压:4V30V,I为一恒流值输出,ITk,即KT标定因子,AD590的标定因子为1A/,I=KTTK,.,2温度特性其温度特性曲线函数是以Tk为变量的n阶多项式之和,省略非线性项后则有:Tc摄氏温度;I的单位为A。可见,当温度为0时,输出电流为273.2A。在常温25时,标定输出电流为298.2A。,I=KTTc273.2,.,3AD590的非线性,150,55,T/C,0.3,0.3,0,在实际应用中,T通过硬件或软件进行补偿校正,使测温精度达0.1。其次,AD590恒流输出,具有较好的抗干扰抑制比和高输出阻抗。当电源电压由5V向10V变化时,其电流变化仅为0.2A/V。长时间漂移最大为0.1,反向基极漏电流小于10pA。,55100,T递增;100150则是递降。T最大可达3,最小T0.3,按档级分等。,T/C,AD590非线性误差曲线,.,美国DALLAS公司生产的单总线数字温度传感器DS1820,可把温度信号直接转换成串行数字信号供微机处理。由于每片DS1820含有唯一的串行序列号,所以在一条总线上可挂接任意多个DS1820芯片。从DS1820读出的信息或写入DS1820的信息,仅需要单总线接口。读写及温度变换功率来源于数据总线,总线本身也可以向所挂接的DS1820供电,而无需额外电源。DS1820提供九位温度读数,构成多点温度检测系统而无需任何外围硬件。,(三)数字输出型IC温度传感器,.,、DS1820的特性单总线接口:仅需一根总线与MCU连接;无需外围元件;由总线提供电源;测温范围为-55125,精度为0.5;九位温度读数;A/D变换时间为200ms;用户可以任意设置温度上、下限报警值。,.,DS1820,1,2,3,GND,I/O,VDD,(a)PR35封装,DS1820的管脚排列,DS1820,1,2,3,4,5,6,7,8,I/O,GND,(b)SOIC封装,NC,NC,NC,NC,VDD,NC,2、DS1820引脚及功能GND:地;VDD:电源电压I/O:数据输入/输出脚(单线接口,可作寄生供电),.,3、DS1820的工作原理图为DS1820的内部框图,它主要包括寄生电源、温度传感器、64位激光ROM单线接口、存放中间数据的高速暂存器(内含RAM),用于存储用户设定的温度上下限值的TH和TL触发器存储与控制逻辑、8位循环冗余校验码(CRC)发生器等七部分。,存储器控制逻辑,64bitROM和单线接口,电源检测,温度传感器,高温触发器,低温触发器,8位CRC触发器,存储器,DS1820内部结构图,.,寄生电源由两个二极管和寄生电容组成。电源检测电路用于判定供电方式。寄生电源供电时,电源端接地,器件从总线上获取电源。在I/O线呈低电平时,改由寄生电容上的电压继续向器件供电。寄生电源两个优点:检测
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年铁路运输安全管理师资格考试试卷及答案
- 2025年影视剪辑与后期制作实践考试卷及答案
- 2025年网页设计与制作考试试题及答案
- 2025年广告设计与创意基础考试试卷及答案
- 2025年文化产业管理专业入学考试试题及答案
- 新能源汽车高性能电机控制器研发与生产合作协议
- 高层建筑工程测量与抗震评估协议
- 直播平台主播IP授权合作协议
- 氢能源技术员项目绩效评估合同
- 多语种同传翻译术语库与技术解决方案租赁合同
- 光影中国学习通超星期末考试答案章节答案2024年
- 工科中的设计思维学习通超星期末考试答案章节答案2024年
- 2020年全国II卷英语高考真题试题(答案+解析)
- 脑洞大开背后的创新思维学习通超星期末考试答案章节答案2024年
- 科傻平差软件说明指导书
- ipo上市商业计划书
- 山东省青岛市市北区2023-2024学年七年级下学期英语期末考试试题
- 《养老护理员》-课件:老年人安全防范及相关知识
- 小儿肺炎诊治考核试题及答案
- 五年级信息技术第13课画城堡课件
- 林场储备林建设项目施工布署及平面布置
评论
0/150
提交评论