江苏省泰兴中学高中数学 第2章 函数的概念 10 函数的奇偶性(2)教学案(无答案)苏教版必修1_第1页
江苏省泰兴中学高中数学 第2章 函数的概念 10 函数的奇偶性(2)教学案(无答案)苏教版必修1_第2页
江苏省泰兴中学高中数学 第2章 函数的概念 10 函数的奇偶性(2)教学案(无答案)苏教版必修1_第3页
江苏省泰兴中学高中数学 第2章 函数的概念 10 函数的奇偶性(2)教学案(无答案)苏教版必修1_第4页
江苏省泰兴中学高中数学 第2章 函数的概念 10 函数的奇偶性(2)教学案(无答案)苏教版必修1_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省泰兴中学高一数学教学案(20)必修1_02 函数的奇偶性(2) 班级 姓名 目标要求1进一步理解函数的概念以及函数的单调性和奇偶性;2综合运用函数的单调性和奇偶性解决函数问题重点难点重点:函数的单调性和奇偶性的综合运用;难点:函数的单调性、奇偶性的综合运用课堂互动例1 已知函数是偶函数,而且在上是减函数,判断在上是增函数还是减函数,并证明你的判断变题1:设函数是定义在上的奇函数,且在区间上是减函数,判断在 上的单调性,并证明你的判断变题2:设函数是定义在上的奇函数,且在区间上是减函数,实数满足不等式,求实数的取值范围变题3:设函数是定义在上的偶函数,且在区间上是减函数,实数满足不等式:,求实数的取值范围变题4:已知函数在上是增函数,函数是偶函数,则的大小关系是_例2 设函数f ( x )对任意实数x , y都有f ( x + y ) = f ( x ) + f ( y ), 且x 0时f ( x ) 0, f (1) = 2(1)求f (0 )的值; (2)求证f ( x )是奇函数;(3) 判断f ( x )的单调性; (4)求f ( x )在3,3上的最大、最小值课堂练习1、若函数在上是奇函数,则a = _2、已知函数为偶函数,则的大小关系是_(从大到小排列)3、是偶函数,是奇函数,且+=,(),求,的解析式。4、 设二次函数, (1)若是偶函数,求实数a的值; (2)若在区间2,+内是减函数,求a的取值范围学习反思1、函数的单调性揭示了自变量及函数值的大小之间的依存关系;2、利用函数的单调性是求函数的最值(值域)的重要途径;3、函数的性质研究要善于从“数”与“形”两种不同角度分析解决4、函数奇偶性的常用结论:江苏省泰兴中学高一数学作业(20)班级 姓名 得分 1、下列四个结论:偶函数的图象一定与轴相交;奇函数的图象一定通过原点;偶函数的图象关于轴对称;奇函数一定没有对称轴;偶函数一定没有对称中心;其中正确说法的序号是_;2、若都是奇函数,在上有最大值5,则在上有最 值,为 3、定义在R上的奇函数在(0,+)上是增函数,又f(3)=0,则不等式0的解集为 4、若函数在上是奇函数,则a = _5、奇函数在上是增函数,且最大值为7,则在上是_函数(填增或减),且有最_值_6、下列函数中,既非奇函数,又非偶函数,且在上为增函数的序号是_ 7、若为奇函数,则的值为_8、定义在上的奇函数是增函数,偶函数在上的图象与函数图象重合,当时,给出不等式:其中正确不等式的序号是 .9、已知是上的偶函数,求的值.10、已知函数是偶函数,且在(,0)上是增函数,,试判断 在(0,+)上的单调性并证明11、设函数 的图象关于原点对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论