




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五章生活中的轴对称,3简单的轴对称图形(第3课时),不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?,再打开纸片,看看折痕与这个角有何关系?,(对折),情境问题一,结论:,角是轴对称图形,对称轴是角平分线所在的直线.,A,B,O,有一个简易平分角的仪器(如图),其中AB=AD,BC=DC,将A点放角的顶点,AB和AD沿AC画一条射线AE,AE就是BAD的平分线,为什么?,对这种可以折叠的角可以用折叠方法的角平分线,对不能折叠的角怎样得到其角平分线?,情境问题二,证明:在ACD和ACB中AD=AB(已知)DC=BC(已知)CA=CA(公共边)ACDACB(SSS)CAD=CAB(全等三角形的对应边相等)AC平分DAB(角平分线的定义),根据角平分仪的制作原理怎样用尺规作一个角的平分线?(不用角平分仪或量角器),O,N,O,M,C,E,分别以,为圆心大于的长为半径作弧两弧在AOB的内部交于,用尺规作角的平分线的方法,A,作法:,以为圆心,适当长为半径作弧,交于,交于,作射线OC,则射线即为所求,将AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?,情境问题三,(2)猜想:,可以看一看,第一条折痕是AOB的平分线OC,第二次折叠形成的两条折痕PD,PE是角的平分线上一点到AOB两边的距离,这两个距离相等.,角的平分线上的点到这个角的两边的距离相等。,探究角平分线的性质,已知:如图,OC是AOB的平分线,点P在OC上,PDOA,PEOB,垂足分别是D,E。,求证:PD=PE,证明:PDOA,PEOB(已知)PDO=PEO=90(垂直的定义),在PDO和PEO中,PD=PE(全等三角形的对应边相等),PDO=PEOAOC=BOCOP=OP,PDOPEO(AAS),(3)验证猜想,角的平分线上的点到角的两边的距离相等.,角平分线上的点到角两边的距离相等。,(4)得到角平分线的性质:,利用此性质怎样书写推理过程?,角平分线的性质,定理:角的平分线上的点到角的两边的距离相等,用符号语言表示为:,A,O,B,P,1,2,1=2PDOA,PEOBPD=PE(角的平分线上的点到角的两边的距离相等),推理的理由有三个,必须写完全,不能少了任何一个。,角平分线的性质,角的平分线上的点到角的两边的距离相等。,定理应用所具备的条件:,定理的作用:,证明线段相等。,O,A,B,C,E,D,P,辨一辨,如图,OC平分AOB,PD与PE相等吗?,(1)如图,AD平分BAC(已知),=,(),在角的平分线上的点到这个角的两边的距离相等。,BDCD,(),判断:,(2)如图,DCAC,DBAB(已知),=,(),在角的平分线上的点到这个角的两边的距离相等。,BDCD,(),(3)AD平分BAC,DCAC,DBAB(已知),=,(),在角的平分线上的点到这个角的两边的距离相等。,不必再证全等,1、如图,OC是AOB的平分线,又_PD=PE(),PDOA,PEOB,角的平分线上的点到角的两边的距离相等,练一练,2、在RtABC中,BD是角平分线,DEAB,垂足为E,DE与DC相等吗?为什么?,4,4、已知ABC中,C=900,AD平分CAB,且BC=8,BD=5,求点D到AB的距离是多少?,A,B,C,D,E,你会吗?,思考:,这节课我们学习了哪些知识?,1、“作已知角的平分线”的尺规作图法;,2、角的平分线的性质:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告安装施工合同
- 精确分析 民用航空器维修试题及答案
- 2025年会计实务解题技巧试题及答案
- 新手指南:无人机执照考试试题及答案
- 优化学习效果一级建造师试题及答案
- 系统化2025年中级会计考试试题及答案
- 护理临床实习试题及答案
- 考试策略规划 2024年高级审计师考试试题及答案
- 医疗健康领域中的区块链技术高职生创新案例
- 护理安全体系建设试题及答案
- GB/T 43632-2024供应链安全管理体系供应链韧性的开发要求及使用指南
- 《光伏发电工程预可行性研究报告编制规程》(NB/T32044-2018)中文版
- 自动焊锡机安全操作规程培训
- 空管自动化系统的基本组成与功能课件
- 2023年杭州市规划局拱墅规划分局编外人员招考考前自测高频难、易考点模拟试题(共500题)含答案详解
- 品牌国际化对企业出口竞争力和品牌价值的影响研究
- 方特企业管理制度
- 医用云胶片方案
- GB/T 5744-2023船用气动快关阀
- 基于蓝牙的无线温湿度监测系统的设计与制作
- 烟花爆竹行业事故应急救援处置培训
评论
0/150
提交评论