




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.6微积分基本定理,【课标要求】1了解微积分基本定理的内容与含义2会利用微积分基本定理求函数的定积分【核心扫描】1用微积分基本定理求函数的定积分是本课的重点2对微积分基本定理的考查常以选择、填空题的形式出现,自学导引1微积分基本定理,连续,f(x),F(b)F(a),F(b)F(a),想一想:导数与定积分有怎样的联系?提示导数与定积分都是定积分学中两个最基本、最重要的概念,运用它们之间的联系,我们可以找出求定积分的方法,求导数与定积分是互为逆运算,2定积分和曲边梯形面积的关系设曲边梯形在x轴上方的面积为S上,x轴下方的面积为S下,则(1)当曲边梯形的面积在x轴上方时,如图(1),则图(1)图(2),图(3),S下,S上S下,0,想一想:在上面图(1)、图(2)、图(3)中的三个图形阴影部分的面积分别怎样表示?提示根据定积分与曲边梯形的面积的关系知:,名师点睛1微积分基本定理的理解(1)微积分基本定理揭示了导数与定积分之间的联系,同时它也提供了计算定积分的一种有效方法(2)根据定积分的定义求定积分往往比较困难,而利用微积分基本定理求定积分比较方便,(3)设f(x)是定义在区间I上的一个函数,如果存在函数F(x),在区间I上的任意一点x处都有F(x)f(x),那么F(x)叫做函数f(x)在区间I上的一个原函数根据定义,求函数f(x)的原函数,就是要求一个函数F(x),使它的导数F(x)等于f(x)由于F(x)cF(x)f(x),所以F(x)c也是f(x)的原函数,其中c为常数(4)利用微积分基本定理求定积分的关键是找出满足F(x)f(x)的函数F(x),通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出F(x),2被积函数为分段函数或绝对值函数时的正确处理方式分段函数和绝对值函数积分时要分段去积和去掉绝对值符号去积处理这类积分一定要弄清分段临界点,同时对于定积分的性质,必须熟记在心,题型一求简单函数的定积分【例1】计算下列定积分思路探索解答本题可先求被积函数的原函数;然后利用微积分基本定理求解,(1)用微积分基本定理求定积分的步骤:求f(x)的一个原函数F(x);计算F(b)F(a)(2)注意事项:有时需先化简,再求积分;f(x)的原函数有无穷多个,如F(x)c,计算时,一般只写一个最简单的,不再加任意常数c.,【变式1】求下列定积分:,求较复杂函数的定积分的方法:(1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后求解,具体方法是能化简的化简,不能化简的变为幂函数、正、余函数、指数、对数函数与常数的和与差(2)精确定位积分区间,分清积分下限与积分上限,定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用,【题后反思】(1)求分段函数的定积分时,可利用积分性质将其表示为几段积分和的形式;(2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝对值号,化为分段函数;(3)含有字母参数的绝对值问题要注意分类讨论,求f(x)在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网金融服务担保合同范本
- 2025年城市供水特许经营合同(GF-2004-2501)规范新规
- 2025年业主临时公约(示范文本)与社区公共收益分配合同
- 居民供热供暖合同模板2025年度
- 2025河南许昌市建安区招聘公益性岗位人员13人模拟试卷及答案详解一套
- 2025嘉兴市保安服务有限公司招聘2人考前自测高频考点模拟试题及答案详解(易错题)
- 2025广东龙川县财政投资评审中心招聘编外人员1人考前自测高频考点模拟试题及1套完整答案详解
- 2025广西右江民族医学院招聘实名编制高层次人才93人模拟试卷含答案详解
- 2025年山东省港口集团有限公司春季校园招聘(183人)模拟试卷及参考答案详解一套
- 2025年甘肃省定西市安定区第二人民医院招聘村卫生所工作人员模拟试卷及答案详解(全优)
- 供应商黑名单管理办法
- 2023年java程序设计试题库
- 管理养老机构 养老机构的运营
- 建筑工程施工质量验收统一标准培训教程
- 氯溴甲烷安全技术说明书
- 特殊特性管理
- 水泥粉磨企业现场危险源辨识与风险评价表
- GB/T 9813-2000微型计算机通用规范
- 光电及光化学转化原理与应用电化学全册配套课件
- 安全教育7不要离家出走
- 工程项目质量管理手册范本
评论
0/150
提交评论