


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十二教时教材:反函数(1) 目的:要求学生掌握反函数的概念,会求一些简单函数的反函数。 过程:一、复习:映射、一一映射及函数的近代定义。二、反函数的引入及其定义:1 映射的例子:这个映射所决定的函数是: y = 3x - 1 这个映射是有方向的:f::A B ( f:x y = 3x - 1)如果把方向“倒过来”呢?(写成) f -1: A B ( f -1:y ) 观察一下函数 y = 3x - 1与函数 的联系 我们发现:它们之间自变量与函数对调了;定义域与值域也对调了,后者的解析是前者解析中解出来的(x)。2 得出结论:函数 称作函数 y = 3x - 1的反函数。定义:P66 (略)注意:(再反复强调):用 y表示 x , x = j (y)满足函数的(近代)定义自变量与函数对调定义域与值域对调写法:x = f -1(y) 考虑到“用 y表示自变量 x的函数”的习惯,将 x = f -1(y) 写成 y = f -1(x) 如上例 f -1:3几个必须清楚的问题:1 如果 y = f (x) 有反函数 y = f -1(x),那么 y = f -1(x) 的反函数是 y = f (x),它们互为反函数。2 并不是所有的函数都有反函数。如 y = x2(可作映射说明) 因此,只有决定函数的映射是一一映射,这个函数才有反函数。3 两个函数互为反函数,必须:原函数的定义域是它的反函数的值域 原函数的值域是它的反函数的定义域 如:不是函数 y = 2 x ( x Z ) 的反函数。 4 指导阅读课本,包括“举例”“定义”“说明”“表格”以加深印象。三、求反函数:1例题:(见P6667 例一)注意:1 强调:求反函数前先判断一下决定这个函数的映射是否是一一映射。2 求出反函数后习惯上必须将 x、y 对调,写成习惯形式。3 求出反函数后必须写出这个函数的定义域原函数的值域。2小结:求函数反函数的步骤: 1判析 2反解 3互换 4写出定义域3补充例题: 1 求函数 (-1 x 0)的反函数。解: -1 x 0 0 x2 1 01 - x2 1 0 1 0 y 1由: 解得: ( -1 x 0 ) (-1 x 0)的反函数是:( 0 x 1 ) 2 求函数 的反函数。解:当 0 x 1时, -1 x2-1 0 即 0 y 1 由 y = x2-1 (0 x 1) 解得 (-1 y 0) f -1(x) = (-1 x 0)当 -1 x 0时, 0 x2 1 即 0 y 1 由 y = x2 (-1 x 0) 解得 (0 y 1) f -1(x) = (0 x 1)所求反函数为:四、小结:反函数的定义、求法、注
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论