已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题四 推理证明的解题技巧本节主要考查的识点有:归纳推理、类比推理两种合情推理和演绎推理;直接证明与间接证明;算法的含义、几种基本的算法语句、程序框图推理渗透在每个高考试题中,证明是推理的一种形式,有的问题需要很强的推理论证能力和技巧推理问题常常以探索性命题的方式出现在高考题中;(3)常见的论证方法有:综合法、分析法及反证法等(1)归纳猜想是一种重要的思维方法,是对有限的资料进行观察、分析、归纳、整理,然后提出带有规律性的结论,是由部分到整理,由个别到一般的推理;结果的正确性还需进一步论证,一般地,考查的个体越多,归纳出的结论可靠性越大(2)类比的关健是能把两个系统之间的某些一致性确切地表述出来,也就是要把相关对象在某些方面一致性的含糊认识说清楚,在学习中要注意通过类比去发现探索新问题(3)综合法的特点是:以“已知”看“可知”,逐步推向“未知”,实际上是寻找使问题成立的必要条件,是一个由因导果的过程;分析法的特点是:从“未知”看“需知”逐步靠拢“已知”,即寻找使问题成立的充分条件,是一个执果索因的过程(4)一般来说:分析法有两种证明途径:由命题结论出发,寻找结论成立的充分条件,逐步推导下去;由命题结论出发,寻找结论成立的充要条件,逐步推导下去(5)反证法在高考中的要求不高,但这种“正难则反”的思维方式值得重视,解决问题时要注意从多方面考虑,提高解决问题的灵活性【高考要求】 (1)合情推理与演绎推理 了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用; 了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理; 了解合情推理和演绎推理之间的联系和差异;(2)直接证明与间接证明 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点; 了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点;(3)了解算法的含义;理解程序框图的三种基本结构:顺序、选择、循环;理解几种基本算法语句.题型一:合情推理例1(1)若ABC内切圆半径为r,三边长为a、b、c,则ABC的面积Sr (a+b+c) 类比到空间,若四面体内切球半径为R,四个面的面积为S1、S2 、S3 、S4,则四面体的体积 (2)在古腊毕达哥拉斯学派把1,3,6,10,15,21,28,这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,则第个三角形数为( ).A. B. C. D.【特别提醒】(1)类比推理是指两类对象具有一些类似特征,由其中一类的某些已知特征推出另一类对象的某些特征;(2)这是一种归纳推理方法,要善于发现其中的数字间的特征才能找到规律,得到一般形式.题型二:演绎推理例2.如图,在直三棱柱中,分别是的中点,点在上,.求证:(1);(2). 题型三:直接证明例3 已知求证:证法1:(综合法) ,当且仅当时等号成立, 当且仅当时等号成立, 即 证法2:(分析法) 要证,只要证 即证 ,即证 即由 得,所以原不等式成立【特别提醒】综合法着力分析已知和求证之间的差异和联系,并合理运用已知条件进行有效的变换是证明的关键,综合法可以使证明过程表述简洁,但必须首先考虑从哪开始,这一点比较困难,分析法就可以帮助我们克服这一点,运用分析法比较容易探求解题的途径,但过程不及综合法简单,所以应把它们结合起来. (1)用综合法证明时难找到突破口,解题受阻;(2)分析法是寻找使不等式成立的充分条件,最后要充分说明推出的结论为什么成立.题型四:间接证明例4:已知函数y=ax+(a1).(1)证明:函数f(x)在(-1,+)上为增函数;(2)用反证法证明方程f(x)=0没有负数根.(2)方法一 假设存在x00 (x0-1)满足f(x0)=0, 则a=-. a1,0a1,0-1,得x02,与假设x00相矛盾,故方程f(x)=0没有负数根.方法二 假设存在x00 (x0-1)满足f(x0)=0, 若-1x00,则-2,a1,f(x0)-1,与f(x0)=0矛盾.若x0-1,则0,a0, f(x0)0,与f(x0)=0矛盾, 故方程f(x)=0没有负数根.【特别提醒】用反证法证明把握三点(1)必须先否定结论,即肯定结论的反面;(2)必须从否定结论进行推理,即把结论的反面作为条件,且必须依据这一条件进行推证,(3)导致的矛盾可能多种多样,但推导出的矛盾必须是明显的.【专题训练】1为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息设定原信息为(),传输信息为,其中,运算规则为:,例如原信息为111,则传输信息为01111传输信息在传输过程中受到干扰可能导致接收信息出错,则下列三个接收信息:(1)11010(2)01100(3)10111,一定有误的是 (填序号)2. 已知函数.()求函数的单调区间;(2)试证明:对任意,不等式恒成立图3.如图所示,点P为斜三棱柱ABC-A1B1C1的侧棱BB1上一点,PMBB1交AA1于点M,PNBB1交CC1于点N.(1)求证:CC1MN;(2)在任意DEF中有余弦定理:DE2=DF2+EF2-2DFEFcosDFE.拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明. 答案及其解析令得显然是上方程的解令,则函数在上单调递增是方程的唯一解当时,当时即对,不等式恒成立3.【解析】(1)PMBB1,PNBB1, BB1平面PMN.BB1MN.又CC1BB1,CC1MN
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 透析患者高钾科普
- T梁制作全过程图解-课件
- 设备吊装方案编制受力计算培训课件
- 幕墙结构计算培训课件
- 2020-2025年中级银行从业资格之中级银行业法律法规与综合能力通关考试题库带答案解析
- 2025年版权许可合同范本示例
- 2025进出口贸易合同
- 2025国际技术服务合同范本
- 2025飞行培训合同书范本
- 2025建筑工程施工安全合同模板
- Q-CR 9521-2018 高速铁路信号工程细部设计和工艺质量标准
- GB/T 6892-2000工业用铝及铝合金热挤压型材
- GB/T 6462-2005金属和氧化物覆盖层厚度测量显微镜法
- GB/T 25995-2010精细陶瓷密度和显气孔率试验方法
- 浙江省2023年高考英语试卷及答案(Word版)
- 药品质量与安全管理持续性改进分析门诊药房检查表
- 电子科技大学实验室安全考试题库(全部题库)其他各大高校均可使用
- 清华大学抬头信纸
- (完整)污水处理厂施工组织设计
- 新年计划雪山美景极简工作计划PPT
- 医疗器械培训计划年
评论
0/150
提交评论