神经递质及其受体ppt课件_第1页
神经递质及其受体ppt课件_第2页
神经递质及其受体ppt课件_第3页
神经递质及其受体ppt课件_第4页
神经递质及其受体ppt课件_第5页
已阅读5页,还剩153页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,神经递质及其受体,.,第一节神经递质概述,一、神经递质及其分类,.,神经递质和神经调质的概念,神经递质(neurotransmitter):神经系统通过化学物质作为媒介进行信息传递的过程称为化学传递,化学传递物质即是神经递质。神经调质(neuromodulator):有一些神经调节物本身并不直接触发所支配细胞的功能效应,只是调节传统递质的功能和作用,称为神经调质。,.,神经递质(neurotransmitter):神经递质主要在神经元中合成,而后储存于突触前囊泡内,在信息传递过程中由突触前膜释放到突触间隙,作用于效应细胞上的受体,引起功能效应,完成神经元之间或神经元与其效应器之间的信息传递。,.,神经调质(Neuromodulator):存在于神经系统,主要由神经元产生,能调节信息传递的效率和改变递质的效应的化学物质,它们不直接传递神经元之间信息。,.,神经递质与神经调质比较,.,但神经肽,NO,CO等不断被发现的信息传递物质,并不完全符合以上条件,用此标准判断一个神经信息活性物质是否为神经递质并不完善,.,神经递质分类,神经肽,经典神经递质,是生物体内主要起着信息传递作用的生物活性多肽,分布于神经组织也可存在于其它组织。,下丘脑释放激素类、神经垂体激素类、阿片类、垂体肽类、脑肠肽类等,其他类,NO、CO、组胺和腺苷、前列腺素等,.,二、神经递质的代谢,(一)底物和酶是合成的限速因素(二)囊泡储存是递质储存的主要方式(三)依赖Ca2+的囊泡释放及其它释放形式(四)递质释放的突触前调制(五)递质通过重摄取、酶解和弥散在突触间隙消除,.,(一)底物和酶是合成的限速因素,小分子递质(经典递质)在突触前末梢由底物经酶催化合成。酶在胞体内合成,经慢速轴浆运输(0.55mm/d)方式运输到末梢,底物通过胞膜上的转运蛋白(或称转运系统)摄入。所以合成速度受限速酶和底物摄入速度的调节。而神经肽的合成方式完全不同,在胞体内合成大分子前体,然后在运输过程中经裂解酶裂解、修饰而成。,.,(二)囊泡储存是递质储存的主要方式,递质合成后通过囊泡转运体储存在囊泡内,囊泡内可以有数千个递质分子。待释放的活动囊泡聚集在突触前膜活动区,为递质的胞裂外排作好准备。小分子递质如乙酰胆碱、氨基酸类递质储存在小的清亮囊泡;而神经肽储存在大的致密核心囊泡;单胺类递质储存的囊泡既可有小的致密核心囊泡,也可是大的的致密囊泡。,聚集在突触前膜活动区,.,(三)依赖Ca2+的囊泡释放及其它释放形式,囊泡释放是递质释放的主要形式,囊泡的胞裂外排在所有递质都相似,但在释放的速度上有所差异。小分子递质的释放比神经肽快。不依赖Ca2+的胞浆释放,胞膜转运体反方向转运的释放。弥散方式释放。如前列腺素、NO和CO少量的漏出(leakout)。,.,(四)递质释放的突触前调制,递质的释放受自身受体或异源受体的调节。突触前自身受体无论是促代谢型受体或离子通道偶联型受体,激活后产生二种效应:一种效应是Ca2+通道关闭,或者K+通道开放使膜超极化,减少冲动到达末梢时电压依赖性Ca2+通道的开放,减少突触前末梢Ca2+内流,以致递质释放减少,这是一种负反馈的调节机制,以限制递质释放的数量,避免突触后神经元过度兴奋和突触后受体的失敏。另一种效应是使突触前膜去极化,Ca2+通道开放,Ca2+内流增加,导致递质释放增加,,.,(五)递质通过重摄取、酶解和弥散在突触间隙消除,递质释放到突触间隙,与突触后受体结合,未与受体结合的一部分递质必须迅速移去,否则突触后神经元不能对随即而来的信号发生反应,况且受体持续暴露在递质作用下,几秒后便失敏,使递质传递效率降低。递质失活的方式有重摄取、酶解和弥散。递质的重摄取依靠膜转运体,氨基酸类递质释放后可以被神经元和胶质细胞重摄取,而单胺类递质仅被神经元重摄取。重摄取的递质进入胞浆后又被囊泡转运体摄取重新储存在囊泡中。膜转运体位于神经元和胶质细胞,也可以在周围组织中(如肝、肾、心脏等)。,.,1,2,3,4,扩散,酶解,胶质细胞摄取,重摄取,.,一直认为一个神经元内只存在一种递质,其全部神经末梢均释放一种递质,这一原则称为戴尔原则(DalePrinciple)。近年来,发现有递质共存现象,包括经典递质、神经肽的共同或相互共存。,神经递质与神经调质实际上并不能绝对割裂开来,往往同一种神经化学调节物的具体作用,在某种情况下起递质作用,而在另一种情况下起调质作用。,.,递质共存(neurotransmitterco-existence),两种或两种以上的递质(包括调质)共存于同一神经元内,这种现象称为递质共存。,递质共存的生理意义:协同传递信息通过突触前调节,加强或减弱突触传递直接作用于突触后受体,以相互拮抗或协同的方式来调节器官活动。,.,神经递质共存的现象,有3种形式:不同经典递质共存,如NA与ACh共存于发育中的交感神经节,5-HT与GABA共存于中缝背核,DA与GABA共存于中脑黑质等;经典递质与神经肽共存,如脑内蓝斑核中的NA神经元含有神经肽Y(NPY),中缝大核的5-HT神经元含有SP与TRH,颈上交感神经节神经元有NA和脑啡肽共存等;不同神经肽共存,如下丘脑弓状核有-内啡肽(-EP)与ACTH共存,下丘脑室旁核大细胞有SP与VIP的共存,降钙素基因相关肽(CGRP)与SP共存于感觉神经节与支配心脏神经末梢等。,.,同一细胞相同受体同一细胞不同受体一种作用于突触后细胞,一种作用于突触前自身受体(反馈调节)一种作用于突触后细胞,一种作用于其他神经末梢上的突触前受体(突触前调节)作用于不同类细胞,两种共存的递质或调质在神经化学传递中可能五种作用模式:,.,定位:细胞膜上,膜受体membranereceptors,本质:跨膜糖蛋白,作用:特异性识别并结合配体,将配体携带的信号转变成胞内信号,引起生物学效应,概念,.,膜受体主要有三类,离子通道型受体(ion-channel-linkedreceptor);,G蛋白偶联受体(G-protein-coupledreceptor);,具有酶活性的受体:受体酪氨酸激酶(receptorTrk)本身具有酶活性的受体,.,细胞质膜受体分类:,(1)离子通道受体,(2)G蛋白偶联受体,(3)酶活性受体,.,概念:既为受体,又为离子通道,其跨膜信号转导无需中间步骤,离子通道型受体(配体门控通道)(ion-channel-linkedreceptor),主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。,作用机理:受体和配体结合后,通道蛋白改变构象,导致通道开放或关闭,化学信号转化为电信号,直接引起细胞反应。,.,突触前膜释放的神经递质结合并开启突触后细胞膜上的递质门离子通道,结果导致突触后细胞膜离子流改变,从而将化学信号转换成电信号。,在突触处通过配体门控通道实现化学信号转换为电信号,.,乙酰胆碱受体,.,乙酰胆碱受体,乙酰胆碱受体以三种构象存在,两分子乙酰胆碱的结合可以使之处于通道开放构象,但该受体处于通道开放构象状态的时限仍十分短暂,在几十毫微秒内又回到关闭状态。然后乙酰胆碱与之解离,受体则恢复到初始状态,做好重新接受配体的准备。,.,概念:七次跨膜蛋白,胞外结构域识别信号分子(配体),胞内结构域与G蛋白耦联,G蛋白偶联型受体(也称促代谢型受体)(G-protein-coupledreceptor),.,作用机理:当此受体和配体结合后,激活偶联的G蛋白,调节相关酶活性,在细胞内产生第二信使。,信号分子有神经递质、肽类激素(如肾上腺素、胰高血糖素)等,.,G蛋白偶联受体,肾上腺素受体毒蕈碱型乙酰胆碱受体视网膜视紫红质受体等,通过与G蛋白耦联,调节相关酶活性,在细胞内产生第二信使如cAMP、肌醇磷脂等,从而将胞外信号跨膜传递到胞内。,G蛋白耦联型受体结构具有惊人的相似,为一个单肽链,形成7个螺旋的跨膜结构,每个疏水跨膜区由20-25个氨基酸组成,受体胞外结构域识别胞外信号分子并与之结合,胞内结构域与G蛋白耦联。,.,G蛋白偶联受体的信息传递可归纳为:,.,第二信使(secondmessenger)一般将细胞外信号分子称为“第一信使”,第一信使与受体作用后在细胞内产生的信号分子称为“第二信使”。第二信使学说胞外物质(第一信使)不能进入细胞,它作用于细胞表面受体导致胞内产生第二信使,从而激发一系列生化反应,最后产生一定的生理效应,第二信使的降解使其信号作用终止。,.,受体酪氨酸激酶(receptortrk),单次跨膜蛋白,受体和配体结合后,导致受体二聚化,二聚体内发生自磷酸化从而激活受体的激酶活性,引发生物学效应。,信号分子为细胞因子、干扰素、生长因子等,.,膜受体的特点1、特异性:立体构象互补,分子的立体特异性2、可饱和性:有限的结合能力,受体数目和浓度恒定3、高亲和度:结合能力强4、可逆性:非共价结合5、特定的组织定位,.,第二节乙酰胆碱及其受体acetylcholine,ACh是胆碱能神经的递质,主要在胆碱能神经末梢的胞质液中合成。,.,(二)乙酰胆碱的储存和释放,储存:合成的Ach半量以上以结合型(与ATP和蛋白多糖结合)贮存于囊泡中,其余以游离型存在于胞浆中。ACh能够在囊泡内储存依靠囊泡乙酰胆碱转运体(VAChT)。乙酰胆碱的囊泡释放和胞浆释放:在静息状态下,ACh囊泡有少量的自发性释放。当神经冲动引起神经末梢去极化和Ca2+内流时,通过胞裂外排方式释放Ach。,.,(三)乙酰胆碱的失活,Ach失活主要有三种方式:酶水解(enzymedegradation)(AChE)扩散(diffusion)重摄取(reuptake)ACh失活的主要方式是由乙酰胆碱酯酶(acetylcholinesterase,AChE)酶解水解,突触前膜对ACh的重摄取数量极少,无功能意义。,Ach胆碱酯酶胆碱+乙酸,并进入循环。约50胆碱还可被神经末梢再摄取利用。,.,Metabolism,肝脏,(来源于线粒体),(胆碱酯酶),.,胆碱能神经元(cholinergicneuron):在中枢神经系统中,释放ACh作为递质的神经元。分布:脊髓前角、脑干网状结构、丘脑后侧腹核、边缘系统等。胆碱能纤维(cholinergicfiber):凡释放Ach作为递质的神经纤维.包括:全部自主神经节前纤维;绝大部分副交感神经节后纤维;少数交感神经节后纤维;躯体运动神经纤维均属于此类。,二、中枢胆碱能神经元胞体定位及纤维投射,.,胆碱能投射神经元,大脑皮质和边缘系统:胞体位于隔内侧核、斜角带和苍白球腹侧Meynert基底核。投射纤维形成下述五条通路,隔区海马通路、斜角带杏仁核通路、隔区、视前区缰核、脚间核通路、基底核大脑皮质通路。(基底前脑胆碱能系统)其中感觉皮质和边缘皮质接受了来自基底核以及斜角带的投射,被认为参与了情绪状态的影响和感觉输入的皮质整合。而接受来自隔内侧核以及斜角带胆碱能神经投射的海马则与学习记忆功能密切相关。,主要分布在基底前脑和脑干,向其他脑区发出纤维投射:,.,脑干胆碱能系统:胞体位于脑桥被盖核、背外侧被盖核、内侧缰核、二叠体旁核。脑桥被盖核和背外侧被盖核的纤维分背、腹束(背侧被盖束和腹侧被盖束),向头端投射至丘脑、下丘脑、苍白球和尾壳核。它们的纤维与其它上行纤维组成上行网状激活系统,引起警觉和觉醒。内侧缰核、二叠体旁核则分别投射于脚间核和上丘。延髓中的胆碱能神经元:分布在舌下神经核、迷走神经背核、面神经核、三叉神经脊束核等,参与脑干对躯体运动核内脏运动的调节。脊髓中的胆碱能神经元:包括脊髓前角神经元,侧角和骶部的交感、副交感节前神经元。,.,三、乙酰胆碱的受体及其信号转导,乙酰胆碱受体(AchR)可根据其药理特异性配体的不同分为毒蕈碱受体(muscatinicreceptor,M受体)和烟碱受体(nicotinicreceptor,N受体)两类。因为它们可分别被毒蕈碱和烟碱所激动,产生毒蕈碱样作用(M样作用)与烟碱样作用(N样作用)。,.,毒蕈碱受体(muscarinicreceptor,M受体):为G-蛋白耦联受体。当M受体激活时,可改变细胞内第二信使(cAMP或IP3和DG)的浓度,产生一系列自主神经效应;烟碱受体(nicotinicreceptor,N受体):是配体门控离子通道受体(Na+、K+、Ca2+、Mg2+)。小剂量ACh能兴奋N受体,而大剂量ACh则可阻断N受体介导的突触传递。,.,.,(一)M受体,1M受体的亚型与分布,根据M受体对不同选择性激动剂或拮抗剂亲和力的高低,M受体可分为M1、M2、M3、M4和M5五种药理亚型。,.,.,(1)外周M受体,外周M受体主要是M1、M2和M3亚型,主要分布在外周Ach能节后纤维所支配的效应细胞上。,M2受体主要分布在心脏,M1和M3受体主要分布于外分泌腺,M2和M3受体主要存在于各种组织平滑肌近年来的资料还表明:交感神经节中也存在M受体,M1M3受体均有分布。,.,(2)中枢M受体,M1受体主要分布于大脑皮层锥体细胞、海马、尾核头部、丘脑腹侧核、中脑与延髓;M2受体位于大脑皮层浅表层神经元特别是感觉区、运动区、听区与视区。下丘脑、脑桥与延髓也有M2受体。M3受体的分布与M1、M4受体相似。M4受体分布在基底前脑和纹状体。M5受体分布在黑质。,.,2M受体的信号转导,M受体属G蛋白偶联的代谢型受体,有7个跨膜结构域,在Ach的作用下,M受体首先与G蛋白结合诱导一系列生化反应,然后通过第二信使或直接调节细胞膜上的离子通道功能状态,产生一系列生理效应。,.,烟碱受体(nicotinicreceptor,N受体):神经元型烟碱受体(neuronal-typenicotinicreceptor)(N1受体):自主神经系统中节前、节后神经元之间的突触处以及中枢神经系统中的nAChR属于神经元型。肌肉型烟碱受体(muscle-typenicotinicreceptor)(N2受体):神经肌肉接头处的nAChR属于神经元型。,(二)N受体,1N受体的亚型与分布,.,N受体是个受体家族,分为外周N受体与中枢N受体。,中枢N受体有两种类型,-银环蛇毒(-BGT)不敏感受体与-BGT敏感受体。,(1)中枢N受体,主要存在于大脑皮层浅层、丘脑、下丘脑、海马、扣带回、脑干、小脑、脊髓Renshaw细胞等部位。根据该受体在不同部位的可能功能又分为突触前N受体与突触后N受体。,.,(2)外周N受体,骨骼肌-电器官N受体:又称N2受体,主要分布于神经骨骼肌接头的终板膜和电鱼的电器官上。,外周N受体分为神经节N受体、骨骼肌电器官N受体、突触前N受体。,神经节N受体,又称N1受体,位于自主神经节的突触后膜。,突触前N受体可作为自身受体,存在于外周Ach能神经的突触前末梢部位。,.,2N受体的信号转导,N受体属配体门控离子通道受体,它们是由多个(一般为5个)亚单位聚合围成允许阳离子通透的孔道,除了让Na+流入和K+流出外,还允许Ca2+、Mg2+流入,Na+的进胞量大于K+的出胞量。,.,乙酰胆碱的N受体结构及其信号转导,.,nAChR的每个亚单位具有两个主要的亲水段和四个疏水性跨膜段。(第一个亲水段较长,位于细胞外,上有Ach结合位点;第二个亲水段位于胞浆侧,是M3和M4之间的细胞内环,其上具有功能性磷酸化的位点)。,.,nAChR的2个亚单位上各有1个Ach结合位点。,.,5个亚单位的M2跨膜段构成通道的内壁。,.,通道内壁上带负电荷的酸性氨基酸残基(谷氨酸、天冬氨酸)构成的上、中、下三个负电荷环,使得通道排斥阴离子而对阳离子具有选择性。此外,M2跨膜段构型改变也参与通道的门控(安静时,弯曲朝向孔道中央;结合后,弯曲离开中央,贴向内壁,使通道开放)。,.,四、乙酰胆碱的主要生理功能,(一)Ach在外周的功能,Ach是外周传出神经系统的重要神经递质,与外周受体结合后产生其生理学效应。,.,(1)M受体(毒蕈碱性受体),分布绝大多数副交感节后纤维支配的效应器(少数肽能纤维支配的效应器除外),以及部分交感节后纤维支配的汗腺、骨骼肌的血管壁上。效应(M样作用)Ach与M受体结合后,可产生一系列自主神经节后胆碱能纤维兴奋的效应。阻断剂阿托品是M受体的阻断剂,能和M受体结合,阻断Ach的M样作用。,.,M样作用:包括心脏活动的抑制、支气管与胃肠道平滑肌的收缩、膀胱逼尿肌和瞳孔括约肌的收缩、消化腺与汗腺的分泌、以及骨骼肌血管的舒张等。,.,(2)N受体(烟碱性受体),分布N1受体分布于中枢神经系统内和自主神经节的突触后膜上;N2受体分布在神经-肌接头的终板膜上。效应(N样作用)Ach与N1受体结合可引起节后神经元兴奋;Ach与N2受体结合可使骨骼肌兴奋。阻断剂氯筒箭毒碱能同时阻断N1和N2受体;六烃季铵主要阻断N1受体;十烃季铵主要阻断N2受体。,.,(二)Ach在中枢的功能,Ach能神经元在中枢神经系统内的分布极为广泛,它们参与神经系统的多种功能活动。在细胞水平,Ach能神经元对中枢神经元的作用以兴奋为主,它在传递特异性感觉、维持机体觉醒状态、促进学习与记忆以及调节躯体运动、心血管活动、呼吸、体温、摄食与饮水行为、调制痛觉等生理活动均起重要作用。,.,1感觉与运动功能,在感觉特异投射系统中,第二、三级神经元均属ACh能神经元,如丘脑后腹核内的特异感觉投射神经元就是ACh能神经元,它和相应的皮层感觉区神经元形成的突触,以传递并产生特定感觉。在运动功能方面,脊髓前角运动神经元是ACh能神经元,其发出的轴突支配骨骼肌运动,该轴突的侧支可与闰绍细胞构成ACh能突触,最终通过闰绍细胞的活动抑制运动神经元的活动;脑干的躯体、内脏运动传出通路最后一级神经元是ACh能神经元锥体系中,大脑皮层的大锥体细胞是ACh敏感细胞;锥体外系中,纹状体内(特别是尾核)有ACh递质系统,它和多巴胺递质系统之间的平衡,对于维持机体的运动有重要意义。,.,2睡眠与觉醒,中枢ACh能系统抑制中缝背核5-HT递质系统触发的慢波睡眠,从而抑制慢波睡眠。中枢ACh也参与快波睡眠的维持,在实验中将ACh注入猫的侧脑室或脑桥被盖内,均可导致动物产生快波睡眠,而注入密胆碱阻止ACh合成或使用M受体拮抗剂阿托品均可减少快波睡眠,可见快波睡眠可能主要与中枢M受体的激动作用有关。关于对觉醒的研究证明,脑干网状结构上行激动系统的各个环节都存在ACh递质。实验中,刺激中脑网状结构使脑电出现快波时,皮层的ACh释放量明显增多。可见,脑干网状结构ACh能上行激动系统和皮层ACh能系统对激活、维持觉醒状态有重要作用。,.,3学习与记忆,大脑皮层、边缘结构等脑区内富有ACh能纤维。在边缘系统中,尤其是隔区海马边缘叶这条M样ACh能通路与学习记忆功能密切相关,这些脑区损伤可引起学习记忆功能缺陷,出现顺行性遗忘症等。由海马穹隆下丘脑乳头体丘脑前核扣带回海马所构成的海马回路是ACh能通路,阻断M受体后能阻抑信息由短时贮存系统向长时贮存系统转移。海马锥体细胞接受ACh能纤维的传入,锥体细胞上M受体数目减少可能引起记忆减退。网状结构ACh能上行激动系统和皮层深层锥体细胞ACh敏感神经元组成的非特异ACh能系统,可以激活皮层以维持清醒状态,从而为学习记忆提供基础性活动的背景。说明大脑皮层、边缘系统特别是海马等脑区的ACh能神经系统有调节学习记忆的功能。,.,4对心血管活动的调节,中枢ACh对心血管活动的作用主要是升高血压。ACh在延髓头端腹外侧区(RVLM)、脑桥蓝斑(LC)、中脑中央灰质背侧区(dPAG)以及下丘脑后区与内侧核区等部位均有明显升压作用,实验研究表明中枢ACh的升压效应是通过间接地增加外周交感的紧张性来实现的。,.,5.镇痛和针刺镇痛拟胆碱药产生镇痛;针刺镇痛ACh释放,活动6.体温调节(种属差异)7.摄食和饮水(种属差异),.,第三节儿茶酚胺及其受体Catecholamine也有抑制性的效应,如使小肠平滑肌舒张。NA与2受体对突触前NE的释放进行反馈调节。阻断剂酚妥拉明可阻断1与2两种受体;哌唑嗪可阻断1受体;育亨宾可阻断2受体。,.,2)受体,分布1受体主要分布于心脏组织;2受体主要分布于平滑肌,包括支气管、胃肠道、子宫、膀胱逼尿肌以及血管(冠状动脉、骨骼肌血管等)等平滑肌;3受体主要分布于脂肪组织。效应NA与1受体结合后产生兴奋性效应,使心脏活动加强;NA与2受体结合后其效应是抑制性的,使平滑肌的舒张。阻断剂普萘洛尔对1和2受体均有阻断作用;普拉洛尔对1受体有阻断作用;纳多洛尔对2受体有阻断作用。,.,1受体:包括血管收缩(尤其是皮肤、胃肠与肾脏等内脏血管)、子宫收缩和扩瞳肌收缩等;据报道,支气管平滑肌上也有1受体,其效应也是兴奋性的。,1受体:分布于心脏组织中,其作用是兴奋性的。,2受体:分布在平滑肌,其效应是抑制性的,促使支气管、胃肠道、子宫以及血管(冠状动脉、骨骼肌血管等)等平滑肌的舒张。,.,(2)中枢NA受体,1)中枢NA受体的分布,.,突触后NA受体:在突触后,1受体的激动作用通常引起神经元兴奋,其作用机制是由于1受体激动时,经1受体的信号转导,促使K+通道关闭,K+外流减少,从而引起神经元的去极化所致;而2受体激动时,则K+通道开放,K+外流增加,导致神经元超极化而产生抑制效应。,2)中枢NA受体的激动效应,突触前NA受体:与外周突触前NA受体的激动效应相似。突触前2受体起自身受体的作用,反馈性地抑制NA的释放。2受体激动时,通过Gi蛋白介导,抑制细胞内cAMP的生成和蛋白激酶A的活性,从而抑制蛋白激酶A对N型Ca2+通道的磷酶化作用,引起Ca2+通道关闭,Ca2+内流减少。突触前受体易化NA的释放,该作用是通过GS蛋白的介导,增强cAMP调制的磷酸化过程,使Ca2+通过开放所致。,.,(四)NA的生理功能,NA是外周传出神经系统的重要神经递质,与外周受体结合后产生其生理学效应。,1.NA在外周的功能,.,凡能释放NE作为递质的神经纤维,称为肾上腺素能纤维。,包括:,大部分交感神经节后纤维,包括:交感神经兴奋效应。,.,2.NA在中枢的功能,中枢NA能神经元胞体主要集中在延髓和脑桥,按其纤维投射不同的途径分为NA能上行投射系统与NA能下行投射系统。该系统参与机体学习与记忆、觉醒与睡眠、情绪、内脏功能、神经内分泌活动以及心血管活动与镇痛等多种功能活动的调节。,.,(1)学习与记忆,NA对学习记忆有重要调节作用。目前认为,中枢NA递质系统是学习记忆的加强系统,能增强学习记忆保持过程。关于NA增强学习记忆的作用机制,可能是通过调节广泛脑区内的突触传入活动,增强环境中有意义的信息传入,抑制其他刺激传入的干扰,以加强对信息的“筛选”作用,提高注意力,促进信息的贮存和再现。,.,(2)觉醒与睡眠,NA对中枢神经元的作用,既有兴奋也有抑制效应。NA的兴奋作用主要表现在脑电和行为两个方面。电刺激NA能上行通路背束,可在实验动物引起脑电出现去极化的低幅快波,这一现象称为“脑电觉醒”。若损毁背束或使用受体拮抗剂,则动物的觉醒皮层电活动显著减少,慢波睡眠明显延长。提示NA能上行背束与紧张性激醒作用有关,即有助于维持中枢神经系统的觉醒状态。NA对睡眠的影响,目前认为NA能神经元胞体集中的蓝斑中、后部是执行快波睡眠的神经结构。,.,(3)对心血管活动的调节,不同部位的NA能神经元对心血管活动的作用不同。实验表明,电刺激NA能神经元密集的脑桥蓝斑区或化学刺激下丘脑后区等部位的受体,可引起交感活动增强,血压升高,心率加快。激活下丘脑前区、视前区、延髓腹外侧区(VLM)、孤束核(NTS)、脊髓等部位的受体,可引起血压下降、心率减慢。,.,(4)在镇痛中的作用,实验表明,脑内NA主要通过1受体拮抗吗啡镇痛与针刺镇痛;但脊髓内NA则加强吗啡镇痛和针刺镇痛,且证明脊髓内NA的针刺镇痛效应是通过受体实现的。,(5)引起痛觉过敏,(6)参与调控体温,(7)参与调控下丘脑摄食中枢,.,三、多巴胺,(一)中枢DA神经通路1.胞体定位:中脑黑质致密区(SNC)、中脑腹侧被盖区(VTA)、下丘脑、脑室周围2.纤维投射:1)长轴上行性神经元:支配纹状体、边缘叶、大脑皮质等;2)长轴下行性神经元:支配脊髓;3)短轴神经元:起自下丘脑和视前区,支配第3脑室周围和下丘脑垂体等;4)超短轴神经元:位于嗅球和视网膜内。,.,.,长轴上行性神经元(A8-A10):支配纹状体、边缘叶、大脑皮质等,.,1)长轴下行性神经元(A11):支配脊髓;2)短轴神经元(A1115):起自下丘脑和视前区,支配第3脑室周围和下丘脑垂体等;3)超短轴神经元(A1617):位于嗅球和视网膜内。,.,(二)多巴胺受体,1DA受体的分型,根据它们对腺苷酸环化酶(AC)活力、G蛋白的不同影响及受体信号转导过程与特异性配体的不同,可分为D1和D2两种亚型。,.,2DA受体的信号转导,DA受体为G蛋白偶联受体。激活DA受体,通过G蛋白的介导,作用于腺苷酸环化酶(AC)系统,通过第二信使偶联,产生一系列的信号转导和生物效应。,.,3DA受体的激动效应,DA受体可分布于突触前和突触后部位,它们的激动效应各异,低剂量激动剂优先激动自身受体,增大剂量时可同时激动突触后受体。,.,突触前受体:位于胞体-树突的D2自身受体激动时,能负反馈调控神经冲动,抑制DA能神经元的放电活动。位于神经末梢的突触前D2自身受体激动时,能负反馈调节DA的释放,或者负反馈调节酪氨酸羟化酶(TH)活性,抑制DA合成。突触后受体:D1家族受体:主要激动效应,一是参与运动的调节,如运动的启动与协调等,这可能是分布于基底神经节的D1受体功能;其二是通过皮层和海马等部位参与某些高级神经活动。D2家族受体:D2受体主要调节垂体激素的分泌;D2受体也是I型精神分裂症等精神疾病药物作用的靶点。,.,(二)中枢多巴胺生理功能,DA能神经元胞体主要位于中脑和间脑,其脑内DA能系统的神经元主要分布在黑质-纹状体、中脑-边缘系统、中脑-大脑皮层以及结节-漏斗部分。其主要生理功能分别与躯体运动、情绪精神活动以及神经内分泌活动有关。此外,中枢DA能系统对心血管、胃肠道的功能活动也有影响。,.,中脑黑质-纹状体DA系统调节锥体外系运动功能*锥体外系运动:受基底神经节的神经环路(直接环路和间接环路)的调控。*黑质-纹状体DA系统:调节直接环路和间接环路的平衡。调控中心是纹状体。,.,2.中脑腹侧被盖区-大脑皮质-边缘叶DA系统与精神活动的关系中脑-边缘叶DA系统(伏隔核、嗅结节、杏仁核、隔区等):主要调控情绪;中脑-大脑皮质前额叶(PFC)DA系统:参与学习、记忆和认知功能;精神分裂症:两系统DA功能失调,即PFC的D1功能低下,而皮质下结构的D2功能亢进。3.中脑腹侧被盖区-伏隔核DA系统与药物滥用的精神活动吗啡等镇痛剂兴奋中脑腹侧被盖区-伏隔核DA系统(伏膈核是毒品成瘾的心理作用的重要部位)释放DA兴奋心理活动,.,第四节5-羟色胺及其受体,.,5-羟色胺(5-hydroxytyptamine,5-HT)在化学结构上属于吲哚胺,它由吲哚和乙胺两部分构成。在体内,5-HT主要分布在消化道、血液和中枢神经系统内。血液中5-HT很难进入中枢(血脑屏障),可以把中枢和外周5-HT看作两个独立系统。,*体内90%5-HT存在于消化道*中枢神经系统的5-HT占全身含量的1%2%*血液中5-HT被血小板摄取,占全身含量的8%9%,.,一、5-羟色胺的代谢,5-HT的生物合成需要色氨酸(Trp)为前体,以及色氨酸羟化酶(TPH)和5-羟色氨酸脱羧酸(5-HTPD)两种合成酶的参与。,.,量子式释放,酶解失活,色氨酸,色氨酸羟化酶(限速,胞浆),5-羟色氨酸,5-HT,5-羟色氨酸脱羧酶,重新摄取,单胺氧化酶,(一)5-羟色胺的合成与失活,色氨酸是必需氨基酸,从食物中获取。,转运体,突触前末梢,.,(二)5-羟色胺的贮存与释放,5-羟色胺的贮存:,5-羟色胺的释放:,囊泡释放,量子式释放,小颗粒囊泡,.,二、中枢5-HT能神经元通路,1.胞体定位:脑内5-HT神经元主要分布于低位脑干的中线上,称中逢核群,由8个核团所组成。2.纤维投射1)上行纤维:腹侧束:起自B6和B8核群,参加内侧前脑束,分布到前脑广大区域背侧束:主要起自B3、B5和B7核群,投射到中脑导水管周围灰质和下丘脑后部2)下行纤维:主要起自B1B3,纤维束自脊髓侧索下行,分布于脊髓前角、后角和侧角。,.,上行纤维:腹侧束:起自B6和B8核群,参加内侧前脑束,分布到前脑广大区域。背侧束:主要起自B3、B5和B7核群,投射到中脑导水管周围灰质和下丘脑后部。下行纤维:主要起自B1B3,纤维束自脊髓侧索下行,分布于脊髓前角、后角和侧角。,.,三、5-羟色胺的受体及其信号转导,.,(一)中枢5-HT受体的类型及分布,5-HT受体的类型很复杂,目前已发现的5-HT受体有7种亚型,即5-HT15-HT7,5-HT受体广泛存在于中枢神经系统,不同亚型的5-HT受体在中枢的分布不同。5-HT1A受体在边缘系统分布最为密集,5-HT1B、1D受体主要集中在基底神经节,5-HT2、3、4受体分别集中于新皮层和海马等脑区,5-HT5、6、7受体在大脑皮层、边缘系统、下丘脑、丘脑、脑干等脑区均有分布。,.,根据不同类型的5-HT受体在信号转导中的不同作用,可将5-HT受体分为两大家族:5-HT3受体属于离子通道型受体家族外;其他的5-HT受体均为G蛋白偶联受体家族,该家族又分为两类,一类与磷脂酶C(PLC)偶联,有5-HT2A、2B、2C受体;另一类与腺苷酸环化酶(AC)偶联,包括5-HT1A、1B、1D、1E、1F,和5-HT4,5-HT5A、5B,5-HT6、7受体。,(二)中枢5-HT受体介导的信号转导,.,四、中枢5-羟色胺的主要生理功能,.,5-HT能神经元胞体主要集中在脑干背侧近中线区的中缝核群内,从脑干尾端到头端,分B1B9共九个细胞群。头端核群(包括中缝背核和中缝中核)发出上行纤维投射到大脑皮层、纹状体、丘脑、下丘脑、边缘系统和小脑等脑区。尾端核群发出下行纤维主要抵达脊髓的层胶质、层运动神经元和中间内侧柱灰质交感节前神经元。,.,(一)5-HT对睡眠的影响,多数动物实验表明,5-HT主要是触发和维持慢波睡眠。如定向损毁中缝核头端5-HT能神经元或注射对氯苯丙氨酸(PCPA)以选择性阻断5-HT合成,减少脑内5-HT含量,动物出现严重失眠,以慢波睡眠减少为主,且脑内5-HT降低的程度与慢波睡眠的减少呈正比例关系;相反,注射5-羟色氨酸(5-HTP)使脑内5-HT含量增高时,则可产生促眠作用。有资料表明,在人类5-HT则主要影响快波睡眠,且5-HT含量与快波睡眠的时间呈线性关系。,.,(二)5-HT对情绪和精神活动的影响,在下丘脑、边缘系统等与情绪、精神活动关系密切的脑区有大量5-HT能神经元分布。据认为,5-HT对脑内参与情绪反应的功能系统有稳定作用。脑内5-HT代谢失调,使中枢5-HT功能低下时,可导致精神状态失常。如抑郁症患者,脑内5-HT代谢产物5-羟吲哚乙酸(5-HIAA)较正常人低;使用对氯苯丙氨酸(PCPA)阻断5-HT合成,可诱发抑郁症;5-HT能末梢自身5-HT1B受体功能亢进时,通过突触前抑制使5-HT递质释放减少,也可导致抑郁症。用5-HT的前体5-HTP增加脑内5-HT含量,则可对抑郁症发挥治疗作用。,.,(三)5-HT对下丘脑内分泌活动的调节,在下丘脑许多重要核团含有丰富的5-HT能纤维。5-HT递质可调控下丘脑-腺垂体-肾上腺皮质轴、下丘脑-腺垂体-性腺轴和下丘脑-腺垂体-甲状腺轴等的功能活动,其作用有兴奋性影响,也可有抑制性影响。中枢可促进催乳素(PRL)的分泌;抑制促黄体生成素(LH)的分泌。其作用通过下丘脑来实现的。,.,(四)5-HT对体温的调节作用,中枢5-HT对体温的影响在不同种属的动物差异很大。颅脑外伤患者的持续发烧,可能是由于脑损伤释放5-HT作用于下丘脑体温调节中枢所致,5-HT可能作为提高体温的递质而发挥作用。目前多数资料认为,与5-HT激活的受体类型有关,即5-HT2受体可能介导体温升高,而5-HT1A受体则可能介导体温降低。,.,(五)5-HT调制痛觉与镇痛,脑内和脊髓内的5-HT在调制痛觉和镇痛中发挥重要作用。当脑和脊髓内5-HT神经元活动增强时,可使痛阈升高,发挥镇痛作用并可加强吗啡镇痛与针刺镇痛效应;而降低这些神经元的活动,则可使痛阈降低,导致痛觉过敏,削弱吗啡镇痛与针刺镇痛的效果。,.,(六)5-HT与药物依赖,(七)5-HT与学习记忆,(八)5-HT与性行为,.,第五节氨基酸及其受体,.,脑内有些氨基酸在中枢突触传递中起神经递质作用,它们按其作用特点,可分为兴奋性氨基酸与抑制性氨基酸两类,前者包括一些酸性氨基酸,如谷氨酸与天门冬氨酸;后者包括一些中性氨基酸,如r-氨基丁酸与甘氨酸。,.,一、兴奋性氨基酸,谷氨酸(glutamicacid,Glu)和天门冬氨酸对神经元有极强的兴奋作用,故称为兴奋性氨基酸(excitatoryaminoacid,EAA)。研究表明,谷氨酸符合充当中枢兴奋性递质的主要鉴定标准,是中枢内最重要的内源性兴奋性氨基酸递质。,.,谷氨酸符合兴奋性递质的主要鉴定标准:1.谷氨酸存在于突触前末梢中;2.能够在生理刺激下,以依赖Ca2+的方式释放;3.谷氨酸诱发的反应和内源性兴奋性递质诱发的反应相同,并都能被选择性拮抗剂阻断;4.突触间隙内存在迅速中止谷氨酸作用的机制。,.,量子式释放,囊泡,谷氨酰胺,谷氨酰胺酶,Glu,-酮戊二酸,转氨酶,重摄取,神经末梢,(一)谷氨酸的合成与代谢,葡萄糖,vitB6,胶质细胞,谷氨酰胺,.,谷氨酸的储存和释放:低亲和性转运体:存在于囊泡膜上,将胞浆中谷氨酸逆浓度转运到囊泡内,这一过程是由囊泡膜上质子泵(H+-ATP酶)产生的囊泡膜电位驱动的,伴随着Cl-的被动转运。谷氨酸的重摄取:高亲和性转运体:存在于质膜上,将胞浆中的谷氨酸由胞外体液中转运到胞浆中,属于依赖Na+/K+的神经转运体。神经元和神经胶质细胞之间的谷氨酸-谷氨酰胺循环:,.,星形胶质细胞主要表达GLAST和GLT-1两种谷氨酸转运体,它们与谷氨酸的亲和力基本相同。谷氨酸常伴随3个Na+、1个H+进入细胞,整个过程是耗能的。因此,能量匮乏导致ATP不足(如严重缺血)或者细胞内低K+和高Na+等情况,均抑制星形胶质细胞对谷氨酸的摄取。星形胶质细胞对谷氨酸的摄取具有稳定细胞外环境,保护神经元和调节突触活动的能力。,星形胶质细胞摄取谷氨酸的过程:,.,细胞外、突触间隙的谷氨酸(Glu)由AC膜上的谷氨酸转运体摄取,一部分经细胞内的谷氨酰胺合成酶催化,生成谷氨酰胺(Gln)。Gln由AC释放后,被神经元摄取,再转运至突触前神经末梢胞质中,经谷氨酰胺酶脱氨生成Glu,进入小泡准备新一轮的兴奋反应。由此形成神经元和胶质细胞之间的“谷氨酸-谷氨酰胺循环”。该过程对于及时终止Glu对神经元的兴奋性毒性和Glu的循环利用有重要价值。,AC摄取的Glu还可以通过三羧酸循环氧化降解,既可以为细胞提供能量,又防止兴奋性Glu在中枢神经系统中的积聚。,.,.,(二)中枢谷氨酸的分布,不同脑区Glu含量差别不大(2倍),说明以Glu为递质的神经元在脑内分布十分广泛。,大脑皮质含量最高;小脑和纹状体次之;延髓和脑桥更少;脊髓含量最低(区域性:后根和后角较多)。,.,(三)谷氨酸受体及其信号转导,L-2-氨基-4磷酸丁酸(L-AP4)受体,(1)Glu门控的离子型谷氨酸受体(阳离子通道),(2)G蛋白偶联的谷氨酸受体,-氨基-3-羟基-5-甲基-4-异恶唑丙酸(-amino-3-hydroxy-5-methyl-4-isoxazole-propionate,AMPA)受体,非NMDA受体(Na2+、K通道),N-甲基-D-天门冬氨酸(N-methyl-D-aspartale,NMDA)受体(Ca2+通道),海人藻酸(kainiacid,KA)受体,代谢型谷氨酸受体(metabotropicglutametereeeptors,mGluR),受体分型:,.,离子型谷氨酸受体,.,受体分布:几乎所有的中枢神经元都有Glu受体;大脑皮质和海马受体密度最高;间脑和中脑等较低。,.,1.NMDA受体,NMDA受体由4个亚单位围绕的离子通道组成,该受体有二类亚单位,即NR1与NR2(NR2A、NR2B、NR2C和NR2D),NR1是形成NMDA受体的基本亚单位,而NR2则为调节亚单位。NMDA受体是以NR1与NR2复合体形式行使其功能的。,一般特征:(1)通道偶联的离子型受体、Ca2+通道。(2)通道被Mg2+以电压依赖性方式阻断,该通道受电压、化学因素双重控制。-70mV基本不开放,去极化后Mg2+与通道亲和力降低并移出通道。(3)缓慢的通道动力学特征。,.,NMDA受体是配体门控的Ca2+可通透性离子通道,激活后,Ca2+通道开放,产生Ca2+内流;同时Na+、K+的通透性增加,导致Na+内流、K+外流,引起突触后膜去极化,产生慢时程兴奋性突触后电位(S-EPSP),介导持续、缓慢的去极化过程。NMDA受体介导的突触反应十分缓慢,有利于神经元进行时间整合。,.,.,NMDA受体既受膜电位控制也受其它神经递质控制。NMDA受体的激活需要非NMDA受体的参与,其中主要是AMPA受体(-amino-3-hydroxy-5-methyl-4-isoxazolepropionatereceptor)的参与。当刺激达到一定强度时,突触前膜释放的谷氨酸作用于AMPA受体,通过AMPA受体通道的离子流增强,使得邻近NMDA受体的突触后膜局部去极化,进而导致NMDA受体通道Mg2+阻断的释放,这时谷氨酸与NMDA受体的结合便可使通道打开。NMDA受体受多种内源性物质或药物的调制:具多个结合位点,如Glu,Mg2+,Zn2+,H+,多胺,甘氨酸等。当有甘氨酸结合到甘氨酸结合位点时,通过变构调控可以大大增强谷氨酸作用于NMDA受体后所产生的效应。,.,NMDA受体有两个显著区别于其他谷氨酸受体的特性。具有电压依赖的Mg2+离子阻断作用,即当膜电位高于-40mV时,这种Mg2+对NMDA受体的阻断作用会消失;NMDA受体不仅对单价离子Na+、K+有通透性,而且对Ca2+具有高通透性,NMDA受体参与了许多复杂的生理和病理机制。如诱导长时程增强作用(long-termpotentiation,LTP)因而与学习和记忆机制相关,控制发育过程中大脑神经元回路(braincircuitry)的结构和突触的可塑性,缺血缺氧导致的兴奋性毒性作用等。,.,生理作用(1)参与突触传递(2)参与突触传递可塑性毒性作用谷氨酸的过量释放以及NMDA受体的过度激活主要通过增加细胞内Ca2+发挥毒性作用。脑内的疾病造成的神经元损伤大都与Ca2+超载有关,如脑缺血,中风,癫痫,AD,PD等。Ca2+超载的毒性机制主要是由于Ca2+浓度增高激活了细胞内很多酶系统,如NOS,蛋白水解酶,脂质过氧化酶,从而生成大量自由基,NO,同时线粒体的功能也发生紊乱,导致细胞的结构破坏,甚至坏死。,.,2.非NMDA受体,非NMDA受体是由4个亚单位构成的异聚体,包括AMPA受体和KA受体。已被克隆的AMPA受体有4个亚单位,分别命名为GluR1GluR4,已克隆的KA受体亚单位有GluR5GluR7和KA1与KA2。,非NMDA受体是Na+/K+通透性离子通道型受体。该受体对膜电位的不敏感和Ca2+的低通透性。受体激活后,主要允许Na+、K+通透,使膜电位显著减少,产生一种短时程的快兴奋性突触后电位(f-EPSP),导致神经元的快速兴奋效应。,.,3.mGlu受体,mGluR属于G蛋白偶联受体。8种亚型,即mGluR18。,mGluR1、5可通过G蛋白的介导作用直接与离子通道偶联,抑制K+、Ca2+通道开放,使K+外流减少,从而引起膜的缓慢去极化,增加细胞的兴奋性。,mGluR2、3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论