




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、复习导入,1.,解,f(x)在(-,-4)、(2,)内单调递增,,你记住了吗?,有没搞错,怎么这里没有填上?,求导数求临界点列表写出单调性,+,+,-,f(x)0,(x+4)(x-2)0,x2,f(x)在(-4,2)内单调递减。,f(x)0,(x+4)(x-2)0,-4x0,f(x)0,极大值点,极小值点,极大值,极小值,0,f(b)=0,都大,f(b)0,问题1:你能找出函数的极小值点和极大值点吗?为什么?观察上述图象,试指出该函数的极值点与极值,并说出哪些是极大值点,哪些,问题2:极小值一定比极大值小吗?上述图象,试指出该函数的极值点与极值,并说出哪些是极大值点,哪些,观察图像回答下面问题:,不一定,?,【解】(1)f(x)3x26x9.解方程3x26x90,得x11,x23.当x变化时,f(x)与f(x)的变化情况如下表:,因此,当x1时函数取得极大值,且极大值为f(1)10;当x3时函数取得极小值,且极小值为f(3)22.,求函数极值(极大值,极小值)的一般步骤:(1)确定函数的定义域(2)求方程f(x)=0的根(3)用方程f(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格(4)由f(x)在方程f(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况若f(x)左正右负,则f(x)为极大值;若f(x)左负右正,则f(x)为极小值,求导求极点列表求极值,练习:,求下列函数的极值:,解:,解得列表:,+,+,单调递增,单调递减,单调递增,所以,当x=3时,f(x)有极大值54;,当x=3时,f(x)有极小值54.,思考,(1)导数为0的点一定是函数的极值点吗?,例如:f(x)=x3,f(x)=3x20,f(0)=302=0,结论,若f(x0)是极值,则f(x0)=0。反之,f(x0)=0,f(x0)不一定是极值,y=f(x)在一点的导数为0是函数y=f(x)在这点取得极值的必要条件。,函数的性质,单调性,单调性的判别法,单调区间的求法,函数极值,函数极值的定义,函数的极大值与极小值统称为极值,使函数取得极值的点称为极值点.,函数极值的求法,必要条件,求极值的步骤:1.求导,2.求极点,3.列表,4.求极值,1.求导,2.求临界点3.列表,4.单调性,1极值的概念理解在定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值请注意以下几点:(1)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个定义域内最大或最小,已知函数极值情况,逆向应用确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性,极值问题的综合应用主要涉及到极值的正用和逆用,以及与单调性问题的综合,题目着重考查已知与未知的转化,以及函数与方程的思想、分类讨论的思想在解题中的应用,在解题过程中,熟练掌握单调区间问题以及极值问题的基本解题策略是解决综合问题的关键,设函数f(x)x36x5,xR.(1)求函数f(x)的单调区间和极值;(2)若关于x的方程f(x)a有三个不同的实根,求实数a的取值范围【思路点拨】(1)利用导数求单调区间和极值.(2)由(1)的结论,问题转化为yf(x)和ya的图象有3个不同的交点,利用数形结合的方法求解.,【名师点评】用求导的方法确定方程根的个数,是一种很有效的方法它通过函数的变化情况,运用数形结合思想来确定函数图象与x轴的交点个数,从而判断方程根的个数,(2)函数的极值不一定是惟一的,即一个函数在某个区间上或定义域内的极大值或极小值可以不止一个(3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值,如下图所示,x1是极大值点,x4是极小值点,而f(x4)f(x1),2极值点与导数为零的点(1)可导函数的极值点是导数为零的点,但是导数为零的点不一定是极值点,即“点x0是可导函数f(x)的极值点”是“f(x0)0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年木材加工、处理机械项目申请报告
- 水龙吟-苏轼课件
- 机电设备安装调试与验收方案
- 水粉插画基础知识培训课件
- 混凝土施工中预应力钢筋张拉技术方案
- 基础设施施工工艺优化
- 混凝土施工的临时设施搭建与管理方案
- 城镇集中供热的用户需求与服务管理方案
- 水痘和腮腺炎培训课件
- 用户体验设计42课件
- 社保补助代理协议书
- 2物流行业2025年人力资源招聘策略研究
- 幼儿园大班家长会
- 非洲出国务工合同协议
- 统计分析在资产评估中的运用
- 网络基础知识课件教学
- 信号工-矿井提升运输安全培训课件
- 劳务派遣与工厂签合同
- 2024辽宁交投艾特斯技术股份有限公司招聘笔试参考题库附带答案详解
- 2025年农业社会化作业合作协议
- 化工设备基础知识培训课件
评论
0/150
提交评论