例析二次函数图象性质的运用 人教版_第1页
例析二次函数图象性质的运用 人教版_第2页
例析二次函数图象性质的运用 人教版_第3页
例析二次函数图象性质的运用 人教版_第4页
例析二次函数图象性质的运用 人教版_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例析二次函数图象性质的运用徐加生与二次函数相关的题目是高考的热点题型,充分利用二次函数图象的性质,从形象直观到理性思考,能找到较为简捷的解题思路。下面从不同侧面入手,介绍几种常见类型的解题思路。一、图象的位置根据题意考察结合条件的二次函数图象的位置,以形助数列出不等式易求解。例1. 若二次函数在区间内至少存在一点c,使,求实数p的取值范围。分析1:依题意有或即或解得或所以分析2:(补集法)问题的反面即抛物线在内位于x轴下方(含与x轴的交点)。令且,得且求得或求其补集得符合题意的解是二、图象的对称轴二次函数图象的对称轴是二次函数的重要几何特征,除轴对称的关系外,还有图象顶点的横坐标这一几何量。灵活运用这些知识来解题,效果甚好。例2. 已知a0,函数(I)当b0时,若对任意,都有,证明。(II)当b1时,证明对任意,的充要条件是;(III)当时,讨论对任意的充要条件。解:(I)因为对恒成立,且所以又f(x)图象过原点且对称轴,故时,恒成立的充要条件为或(II)当时,因,故的解集为空集,而的解等价于(III)当时,由得,因,且,由得,故时,的充要条件是。三、与x轴的交点当二次函数的图象与x轴相交时,利用交点所在位置,根据范围列式,可获简解。例3. 关于x的实系数二次方程的两实根为,证明:(1)如果,那么且;(2)如果且,那么。分析:所证两个小题,即证且的充要条件是且。若令,则问题转化为求证抛物线与x轴的两个交点落在区间内的充要条件是且,故。由,从而,且四、在x轴上截得的弦二次函数的图象抛物线截x轴所得的弦长为运用此公式是解决有关弦长问题的重要手段。例4. 已知二次函数,其中且。(1)求证此函数的图象与x轴交于相异两点;(2)设函数图象截x轴所得的线段的长为L,求L的取值范围。略解:(1)因为且,则,所以,故,即函数图象与x轴交于相异两点。(2)设函数图象与x轴两交点为,则又且故,则有而在上是单调减函数,则故五、函数图象的顶点位置二次函数图象的顶点即二次函数的最大值或最小值点,而在闭区间上的最值问题必须根据顶点的位置变化来讨论解决。例5. 已知函数,当时,恒成立,求a的取值范围。分析:若恒成立,即有f(x)在上的最小值。收于下面按对称轴与定义域的位置关系分类求解。(1)当,即时,解得,则。(2)当即时,得,则。(3)当,即时,得,与矛盾,舍去。综上所述,得。六、函数单调性二次函数的单调性是比较简单的,根据其单调区间的判定,可获得函数取最值的情况,从而可列式来判断参数的取值。例6. 已知且(1)设,求的表达式;(2)设,试问:是否存在实数,使在上是减函数并且在上是增函数。分析:(1)由得即则若设,则要使在上是减函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论