




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
临沂第十九中学高三年级第二次调研考试数学(理)一选择题1设,则A B C1 D2由曲线,直线,所围成的平面图形的面积为( )A B C. D3.设函数,则( )A是函数的极大值点B是函数的极小值点 C是函数的极大值点D是函数的极小值点4.若的展开式中第三项的二项式系数为15,则展开式中所有项系数之和为( )A. B. C. D.5设函数.若为奇函数,则曲线在点处的切线方程为ABCD6.在古腊毕达哥拉斯学派把1,3,6,10,15,21,28,这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形则第个三角形数为 ( )(A) (B) (C) (D)7.用数学归纳法证明时,由n=k到n=k+1,则左边应增加的式子为( )A. B. C. D.8函数在的图像大致为( )A B C D9.设随机变量,若,则等于( )A B C. D10.若函数在(0,1)上单调递减,则实数a的取值范围是( )A.a1 B. C. D.0a111设为正数,且,则( )A3y2x5z B5z2x3y C3y5z2x D2x3y5z 12.若满足,满足,函数,则关于的方程解的个数是A1 B2 C 3 D4二填空题13.已知,则 14.的展开式中,x3的系数是 (用数字填写答案)15从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_种(用数字填写答案)16已知函数,则的最小值是_三解答题17.(本小题满分12分)已知数列的前项和为,=1,其中为常数.()证明:;()是否存在,使得为等差数列?并说明理由.18.(本小题满分12分)的内角A,B,C的对边分别别为a,b,c,已知(I)求C;(II)若的面积为,求的周长19.(本小题满分12分)设函数,其中.(1)若存在,使得,求整数的最大值;(2)若对任意的,都有,求的取值范围.20. 某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立(1)记20件产品中恰有2件不合格品的概率为,求的最大值点(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?21.已知函数(1)讨论的单调性;(2)若存在两个极值点,证明:22选修4-4,坐标系与参数方程(10分)在直角坐标系xOy中,曲线C的参数方程为(为参数),直线l的参数方程为.(1)若a=-1,求C与l的交点坐标;(2)若C上的点到l的距离的最大值为,求a.临沂第十九中学高三年级第二次调研考试数学(理)答案一、选择题1-5 CBDCD 6-10BDDCB 11-12AC 二、填空题 13. 14 .10 15.16 16.三、解答题17.()由题设,两式相减,由于,所以 6分()由题设=1,可得,由()知假设为等差数列,则成等差数列,解得;证明时,为等差数列:由知数列奇数项构成的数列是首项为1,公差为4的等差数列令则,数列偶数项构成的数列是首项为3,公差为4的等差数列令则,(),因此,存在存在,使得为等差数列. 12分18.(I)由已知及正弦定理得,即故可得,所以(II)由已知,又,所以由已知及余弦定理得,故,从而所以的周长为19. 解:(1),令得,2分当变化时,和的变化情况如下:02-0+单调递减极小值单调递增1可得,.5分要使存在,使得,只需,故整数的最大值为.6分(2)由(1)知,在上,要满足对任意的,都有,只需在上恒成立, 8分即在上恒成立,分离参数可得:,令,可知,当单调递增,当单调递减, 10分所以在处取得最大值,所以的取值范围是. 12分20.(解:(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依题意知,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.21解:(1)的定义域为,.(i)若,则,当且仅当,时,所以在单调递减.(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.(2)由(1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不妨设,则.由于,所以等价于.设函数,由(1)知,在单调递减,又,从而当时,.所以,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源汽车技术与应用考试试卷及答案
- 2025年汽车驾驶员(高级)证考试题库及答案
- 阿坝藏族羌族自治州2025-2026学年七年级上学期语文月考模拟试卷
- 安徽省淮北市杜集区2023-2024学年高一下学期期末考试历史题库及答案
- 安徽省安庆市宿松县2024-2025学年高一下学期期末考试化学题库及答案
- 2025 年小升初哈尔滨市初一新生分班考试语文试卷(带答案解析)-(人教版)
- 2025年教师节感恩老师演讲稿13篇
- 社区消防知识培训课件要点
- 上海市上海师范大学附属金山前京中学2024-2025学年七年级下学期期中考试英语试题(含答案无听力音频及原文)
- 福建省龙岩市非一级达标校2024-2025学年高一上学期11月期中考试历史试卷(含答案)
- 住院病人防止走失课件
- 2024年重庆永川区招聘社区工作者后备人选笔试真题
- 医学技术专业讲解
- 2025年临床助理医师考试试题及答案
- 唯奋斗最青春+课件-2026届跨入高三第一课主题班会
- 2025民办中学教师劳务合同模板
- 2025年南康面试题目及答案
- 2025年事业单位考试贵州省毕节地区纳雍县《公共基础知识》考前冲刺试题含解析
- 高中喀斯特地貌说课课件
- 黄冈初一上数学试卷
- 2025年中国花盆人参行业市场发展前景及发展趋势与投资战略研究报告
评论
0/150
提交评论