高考数学二轮复习 不等式综合应用专题教案_第1页
高考数学二轮复习 不等式综合应用专题教案_第2页
高考数学二轮复习 不等式综合应用专题教案_第3页
高考数学二轮复习 不等式综合应用专题教案_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏灌南高级中学学案-不等式综合应用1、2、3.已知,且,则的最小值是 答案4、5. 已知实数满足则的最小值是 答案 -16、设满足约束条件,若目标函数的最大值为35,则的最小值为 . 87、298、若圆C:在不等式所表示的平面区域内,则的最小值为 9、定义在(0,+)上的函数f(x)满足f(x)+f(y)=f(xy),且x1时f(x)0,若不等式f,对任意x,y(0,+)恒成立,则实数a的取值范围是_10、已知则ax+by的最小值 第11题(2)若ax+by=6,则的最小值 11、如图,在三棱锥中, 、两两垂直,且.设是底面内一点,定义,其中、分别是三棱锥、 三棱锥、三棱锥的体积.若,且恒成立,则a的最小值为 1 12已知正数x、y满足=1 则x+2y的最小值是 13、设实数x,y满足3xy28,49,则的最大值是_(14)若,设函数的零点为,的零点为,则的取值范围是 例1 当0时,求y=的最小值 例2 (1)正数a,b满足a+b+1=ab,则3a+2b的最小值为 (2)已知a、b是正数,a+2b+ab30, 问a、b为何值时ab 有最大值?最大值是多少?(3)、已知直角三角形的周长为,则这个三角形的面积的最大值为 解:设直角边长分别为,则斜边长为,面积为,所以,(等号成立的条件都是) 例3经市场调查,某旅游城市在过去的一个月内(以30天计),日旅游人数(万人)与时间(天)的函数关系近似满足,人均消费(元)与时间(天)的函数关系近似满足.()求该城市的旅游日收益(万元)与时间的函数关系式;()求该城市旅游日收益的最小值(万元). 解:()由题意得, ()因为当时, 当且仅当,即时取等号当时,可证在上单调递减,所以当时,取最小值为 由于,所以该城市旅游日收益的最小值为万元 例4、 当时,为增函数. (1分)当时,=.令,得.(3分)的增区间为,和.(4分)由右图可知,当时,在区间上递减,在上递增,最小值为;(6分) 当时,在区间为增函数,最小值为;(8分)当时,在区间为增函数,最小值为; (9分)综上,最小值. (10分)由,可得, (12分)即或成立,所以为极小值点,或为极大值点.又时没有极大值,所以为极小值点,即(16分) 例5:(1)已知成立,则a的取值范围 (2)若不等式对任意正整数n都成立,则实数x的取值范围 解:n为奇数时n为偶数时综上得(3):已知0 在-1,1上恒成立,则a的取值范围 (-2,2) (4):若成立,则实数x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论