




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学复习解析几何与各章节知识交汇点教案一、 与向量交汇纵观近三年的全国各地高考数学,发现解析几何与向量的交汇是解析题的重要形式,大部分的条件给出都是以向量形式出现,甚至题目的问题也以向量形式描述圆锥曲线的几何特征.因此,理解向量条件所表达的几何意义,用好向量的基本运算是解决此类问题的关键,交汇点:向量的基本运算例1、(2020年山东卷理21)双曲线C与椭圆有相同的焦点,直线y=为C的一条渐近线.(1)求双曲线C的方程;(2)过点P(0,4)的直线,交双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合).当,且时,求Q点的坐标.解:由题意知直线的斜率存在且不等于零设的方程:,则.,.,又,即,将代入得,否则与渐近线平行。例2、(2020年四川卷)已知两定点,满足条件的点的轨迹是曲线,直线与曲线交于两点,如果,且曲线上存在点,使,求的值和的面积。解:由双曲线的定义可知,曲线是以为焦点的双曲线的左支,且,易知 故曲线的方程为 设,由题意建立方程组 消去,得又已知直线与双曲线左支交于两点,有 解得又 依题意得 整理后得 或 但 故直线的方程为设,由已知,得,又,点将点的坐标代入曲线的方程,得 得,但当时,所得的点在双曲线的右支上,不合题意,点的坐标为到的距离为 的面积例3、(06年全国卷I)在平面直角坐标系中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与轴的交点分别为A、B,且向量。求:()点M的轨迹方程; ()的最小值。解:(I)根据题意,椭圆半焦距长为,半长轴长为,半短轴长,即椭圆的方程为。设点P坐标为(,)(其中),则切线C的方程为:点A坐标为:(,0),点B坐标为(0,)点M坐标为:(,)所以点M的轨迹方程为:(且)(II)等价于求函数(其中)的最小值当时等号成立,此时即。因此,点M坐标为(,)时,所求最小值为。例4、(2020年天津卷)如图,以椭圆的中心为圆心,分别以和为半径作大圆和小圆。过椭圆右焦点作垂直 于轴的直线交大圆于第一象限内的点连结交小圆于点设直线是小圆的切线(1)证明,并求直线与轴的交点的坐标;(2)设直线交椭圆于、两点,证明()证明:由题设条件知,故 ,即因此, 解:在 因此, 解:在中 .于是,直线OA的斜率.设直线BF的斜率为,则 .这时,直线BF与轴的交点为()证明:由(),得直线BF得方程为且 由已知,设、,则它们的坐标漫步方程组 由方程组消去,并整理得 由式、和, 由方程组消去,并整理得 由式和, 综上,得到注意到,得 例5、(2020年辽宁卷)已知点,是抛物线上的两个动点,是坐标原点,向量,满足.设圆的方程为(I) 证明线段是圆的直径;(II)当圆C的圆心到直线X-2Y=0的距离的最小值为时,求p的值。【解析】(I)证明1: 整理得: 设M(x,y)是以线段AB为直径的圆上的任意一点,则即整理得:故线段是圆的直径证明2: 整理得: .(1)设(x,y)是以线段AB为直径的圆上则即去分母得: 点满足上方程,展开并将(1)代入得:故线段是圆的直径证明3: 整理得: (1)以线段AB为直径的圆的方程为展开并将(1)代入得:故线段是圆的直径(II)解法1:设圆C的圆心为C(x,y),则又因所以圆心的轨迹方程为设圆心C到直线x-2y=0的距离为d,则当y=p时,d有最小值,由题设得.解法2: 设圆C的圆心为C(x,y),则又因所以圆心的轨迹方程为设直线x-2y+m=0到直线x-2y=0的距离为,则因为x-2y+2=0与无公共点,所以当x-2y-2=0与仅有一个公共点时,该点到直线x-2y=0的距离最小值为将(2)代入(3)得解法3: 设圆C的圆心为C(x,y),则圆心C到直线x-2y=0的距离为d,则又因当时,d有最小值,由题设得.例6、(2020年北京卷)已知点,动点满足条件.记动点的轨迹为.()求的方程;()若是上的不同两点,是坐标原点,求的最小值.解法一: ()由|PM|PN|=知动点 P 的轨迹是以 为焦点的双曲线的右支,实 半轴长又半焦距 c=2,故虚半轴长所以 W 的方程为, ()设 A,B 的坐标分别为, 当 ABx轴时,从而从而当AB与x轴不垂直时,设直线AB的方程为,与W的方程联立,消去y得故 所以 .又因为,所以,从而综上,当AB轴时, 取得最小值2.解法二:()同解法一. ()设 A,B 的坐标分别为,则, ,则令则且所以 当且仅当,即时”成立.所以、的最小值是2.例7、(福建卷,21(本小题满分12分)已知方向向量为n (1,)的直线过点(0,2)和椭圆C:的焦点,且椭圆C的中心关于直线的对称点在椭圆C的右准线上。()求椭圆C的方程;()是否存在过点E(2,0)的直线m交椭圆C于点M、N,满足(为坐标原点)。若存在,求出直线m的方程;若不存在,请说明理由。解:(); ()或 或。例8、(湖南卷,19)(本小题满分14分)已知椭圆C:1(ab0)的左右焦点为F1、F2,离心率为e. 直线l:yexa与x轴y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设. ()证明:1e2; ()确定的值,使得PF1F2是等腰三角形.解:()()PF1F2为等腰三角形.例9、(重庆卷,21(本小题满分12分)已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点. ()求双曲线C2的方程;()若直线与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围.解:()C2的方程为()k的取值范围为二、 与不等式交汇解析几何与不等式交汇,主要体现在运用不等式的相关知识,解析或证明几何图形的某些特征。与不等式交汇点集中在不等式的解法,不等式的证明,在尤其是均值不等式。(2020年福建卷理20)已知椭圆的左焦点为F,O为坐标原点。(I)求过点O、F,并且与椭圆的左准线相切的圆的方程;(II)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围。评述: 本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法,考查运算能力和综合解题能力。满分12分。解:(I)圆过点O、F,圆心M在直线上。设则圆半径由得解得所求圆的方程为(II)设直线AB的方程为代入整理得直线AB过椭圆的左焦点F,方程有两个不等实根。记中点则的垂直平分线NG的方程为令得点G横坐标的取值范围为三、 与其它几何交汇例1、(2020年安徽卷理22)如图,F为双曲线C:的右焦点。P为双曲线C右支上一点,且位于轴上方,M为左准线上一点,为坐标原点。已知四边形为平行四边形,。OFxyPM第22题图H()写出双曲线C的离心率与的关系式;()当时,经过焦点F且平行于OP的直线交双曲线于A、B点,若,求此时的双曲线方程。解:四边形是,作双曲线的右准线交PM于H,则,又,。()当时,双曲线为四边形是菱形,所以直线OP的斜率为,则直线AB的方程为,代入到双曲线方程得:,又,由得:,解得,则,所以为所求。例2、(2020年江苏卷)已知三点P(5,2)、(6,0)、(6,0)。()求以、为焦点且过点P的椭圆的标准方程;()设点P、关于直线yx的对称点分别为、,求以、为焦点且过点的双曲线的标准方程。(I)由题意,可设所求椭圆的标准方程为+,其半焦距。, ,故所求椭圆的标准方程为+;(II)点P(5,2)、(6,0)、(6,0)关于直线yx的对称点分别为:、(0,-6)、(0,6)设所求双曲线的标准方程为-,由题意知半焦距, ,故所求双曲线的标准方程为-。例3、(2020年湖北卷)设、分别为椭圆的左、右顶点,椭圆长半轴的长等于焦距,且为它的右准线.()求椭圆的方程;()设为右准线上不同于点(4,0)的任意一点,若直线、分别与椭圆相交于异于、的点、,证明点在以为直径的圆内.解:()依题意得 a2c,4,解得a2,c1,从而b.故椭圆的方程为 .()解法1:由()得A(2,0),B(2,0).设M(x0,y0).M点在椭圆上,y0(4x02). 又点M异于顶点A、B,2x00,0,则MBP为锐角,从而MBN为钝角,故点B在以MN为直径的圆内。解法2:由()得A(2,0),B(2,0).设M(x1,y1),N(x2,y2),则2x12,2x2b0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点(1) 求点P的轨迹H的方程(2) 在Q的方程中,令a21cosqsinq,b2sinq(0b0)上的点A(x1,y1)、B(x2,y2),又设P点坐标为P(x,y),则1当AB不垂直x轴时,x1x2,由(1)(2)得b2(x1x2)2xa2(y1y2)2y0b2x2a2y2b2cx0(3)2当AB垂直于x轴时,点P即为点F,满足方程(3)故所求点P的轨迹方程为:b2x2a2y2b2cx0(2)因为,椭圆Q右准线l方程是x,原点距l的距离为,由于c2a2b2,a21cosqsinq,b2sinq(00)与直线l2:ykx之间的阴影区域(不含边界)记为W,其左半部分记为W1,右半部分记为W2(I)分别用不等式组表示W1和W2;(II)若区域W中的动点P(x,y)到l1,l2的距离之积等于d2,求点P的轨迹C的方程;(III)设不过原点O的直线l与(II)中的曲线C相交于M1,M2两点,且与l1,l2分别交于M3,M4两点求证OM1M2的重心与OM3M4的重心重合解:(I)W1=(x, y)| kxykx, x0,W2=(x, y)| kxy0(II)动点P的轨迹C的方程为例6、(湖北卷,21)(本小题满分12分)设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点. ()确定的取值范围,并求直线AB的方程;()试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由. (此题不要求在答题卡上画图)解:()直线AB的方程为()12例7、(江西卷,22(本小题满分14分)如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.(1)求APB的重心G的轨迹方程.(2)证明PFA=PFB.解:()重心G的轨迹方程为:例8、(上海卷,文21)已知抛物线的焦点为F,A是抛物线上横坐标为4、且位于轴上方的点,A到抛物线准线的距离等于5。过A作AB垂直于轴,垂足为B,OB的中点为M。(1)求抛物线方程;(2)过M作,垂足为N,求点N的坐标;(3)以M为圆心,MB为半径作圆M,当是轴上一动点时,讨论直线AK与圆M的位置关系。解:(1)抛物线抛物线方程为y2= 4x.(2)点A的坐标是(4,4), 由题意得B(0,4),M(0,2),又F(1,0), 则FA的方程为y=(x1),MN的方程为解方程组(3)由题意得,圆M的圆心是点(0,2),半径为2.当m=4时,直线AK的方程为x=4,此时,直线AK与圆M相离,当m4时,直线AK的方程为 即为圆心M(0,2)到直线AK的距离,令时,直线AK与圆M相离; 当m=1时,直线AK与圆M相切; 当时,直线AK与圆M相交.例9、P、Q、M、N四点都在椭圆上,F为椭圆在y轴正半轴上的焦点.已知与 共线, 与共线,且 = 0.求四边形PMQN 的面积的最小值和最大值. 解: 例10、已知椭圆的中心在坐标原点,焦点F在x轴上,长轴A1A2的长为4,左准线与x轴的交点为M,.()求椭圆的方程;()若直线1:,P为1上的动点,使最大的点P记为Q,求点Q的坐标(用m表示).四、 与数列交汇与数列交汇体现在两个方面:一是在几何图形中构造出数列模型,然后求解数列的相关问题;二是以数列的知识给出几何图形的某个条件,然后求解几何的某些问题。例1、( 2020年重庆卷理22)已知一列椭圆Cn:x2+=1. 0bn1,n=1,2.若椭圆C上有一点Pn使Pn到右准线ln的距离d.是PnFn与PnCn的等差中项,其中Fn、Cn分别是Cn的左、右焦点.()试证:bn (n1);()取bn,并用SA表示PnFnGn的面积,试证:S1S1且SnSn+3 (n3).证:(1)由题设及椭圆的几何性质有设 因此,由题意应满足即即,从而对任意()设点 得两极,从而易知f(c)在(,)内是增函数,而在(,1)内是减函数.现在由题设取是增数列.又易知故由前已证,知例2、(浙江卷20)、设点(,0),(,)和抛物线:(),其中,由以下方法得到:在抛物线:上,点A(,0)到P2的距离是A到:上,点(,0)到的距离是到上点的最短距离。()求及的方程; ()证明是等差数列。解:()由题意得,设点是上任意一点,则令则由题意得,即又在上,解得故的方程为()设点是上任意一点,则令则由题意得即又,即下面用数学归纳法证明,当时,等式成立;假设当时,等式成立,即,则当时,由知,又,即时,等式成立由知,等式对成立,故是等差数列五、 与函数交汇(2020年全国卷II)已知抛物线x24y的焦点为F,A、B是抛物线上的两动点,且(0)过A、B两点分别作抛物线的切线,设其交点为()证明为定值;()设ABM的面积为S,写出Sf()的表达式,并求S的最小值解:()由已知条件,得F(0,1),0设A(x1,y1),B(x2,y2)由,即得(x1,1y)(x2,y21), 将式两边平方并把y1x12,y2x22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国际贸易专员职业素质评估考试试题及答案解析
- 2025年村级物流安全员笔试冲刺题
- 课件专业评审表评价
- 课件与乐器的融合
- 2025年建筑设计师专业面试模拟题与案例分析
- 2025年竞聘笔试县公司电力电商解析题
- 2025年香材鉴别师初级笔试模拟试卷
- 2025年供销社考试模拟试卷及答案
- 应用写作孙秀秋教学课件
- 2025年安全生产法规考试十套题及答案
- 设备设施包保管理制度
- 艾宾浩斯记忆曲线-全年365天学习计划
- 2025年司法局司法辅助岗招聘考试笔试试题(含答案)
- 管道完整性管理培训
- 带病工作免责协议书
- 《创新大学英语综合教程 学生用书3》电子教案-综合教程第三册教案Unit2
- 保密警示教育典型泄密案例教育学习
- 东欧与北亚高二下学期 地理 区域地理复习课件
- 学校采购煤炭合同协议
- 保安值班室管理制度
- 特种设备质量安全风险日管控-周排查-月调度管理制度
评论
0/150
提交评论