【优化方案】2020高中数学 第3章3.1.1知能优化训练 新人教A版选修2_第1页
【优化方案】2020高中数学 第3章3.1.1知能优化训练 新人教A版选修2_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1已知a、bR,则“ab”是“(ab)(ab)i为纯虚数”的()A充要条件B充分不必要条件C必要不充分条件 D既不充分也不必要条件解析:选C.若ab0,则(ab)(ab)i不是纯虚数;若(ab)(ab)i是纯虚数,则.故选C.2适合x3i(8xy)i的实数x,y的值为()Ax0且y3 Bx0且y3Cx5且y2 Dx3且y0解析:选A.由,得,故选A.3(2020年高考江苏卷)设复数i满足i(z1)32i(i是虚数单位),则z的实部是_答案:14已知(2x1)3yi(xy)(3y)i,求实数x,y的值解:由复数相等的意义,得.一、选择题1如果C,R,I分别表示复数集,实数集和纯虚数集,其中C为全集,则()ACRI BRI0CRCI DRI解析:选D.用韦恩图可得答案2下列说法正确的是()A如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等Bai是纯虚数C如果复数xyi是实数,则x0,y0D复数abi不是实数解析:选A.由两个复数相等的充要条件知这两个复数的实部与虚部分别相等,即它们的实部差与虚部差都为0.3若复数(a23a2)(a1)i是纯虚数,则实数a的值为()A1 B2C1或2 D1解析:选B.因为复数(a23a2)(a1)i是纯虚数,所以,解得a2.故选B.4下列各数中,纯虚数的个数是()2,i,0i,5i8,i(1),0.618A0 B1C2 D3解析:选C.根据纯虚数的定义知,i,i(1)是纯虚数5对于复数abi(a、bR),下列结论正确的是()Aa0,则abi为纯虚数Ba(b1)i32i,则a3,b3Cb0,则abi为实数D1的平方等于i解析:选C.对于A,当a0时,abi也可能为实数;对于B,a(b1)i32i,则a3,b1;对于D,1的平方仍为1,故C对6若(a2)ibi,其中a、bR,i是虚数单位,则a2b2()A0 B2C5 D1解析:选D.,故,a2b21.二、填空题7若a2ibi1(a、bR),则bai_.解析:根据复数相等的充要条件,得,bai2i.答案:2i8若复数zsin2i(1cos2)是纯虚数,则_.解析:2(2k1),k(kZ)答案:k(kZ)9已知复数zk23k(k25k6)i(kZ),且z0,则k_.解析:k2.答案:2三、解答题10求适合等式(2x1)iy3i的x、y的值(其中xR,y是纯虚数)解:设ybi(b0)代入已知等式得,(2x1)i(b3)i,y2i.x,y2i.11已知关于实数x,y的方程组有实数解,求实数a,b的值解:根据复数相等的充要条件,得,解得.把代入,得54a(6b)i98i,且a、bR,解得.12设mR,复数z2m23m2(m23m2)i.试求m为何值时,z分别为:(1)实数;(2)虚数;(3)纯虚数解:(1)当z为实数时,则有m23m20,解得m1或2.即m为1或2时,z为实数(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论