福建省西山高中2020高中数学《1.1四种命题》学案(第2课时) 新人教版选修1-1_第1页
福建省西山高中2020高中数学《1.1四种命题》学案(第2课时) 新人教版选修1-1_第2页
福建省西山高中2020高中数学《1.1四种命题》学案(第2课时) 新人教版选修1-1_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1命题及其关系 (第 2课时)自学目标:1 判断命题及命题真假。2 能写出四种命题,并会分析四种命题间的相互关系。重点:四种命题的相互关系难点:互为逆否命题具有相同真假性。教材助读:1 原命题:若P,则q则:2 逆命题: 3 否命题: 4 逆否命题: 预习自测 1.下列四个命题中,命题(1)与命题(2)、(3)、(4)的之间分别有什么关系?它们的真假性如何?(1)若f(x)是正弦函数,则f(x)是周期函数 (2)若f(x)是周期函数,则f(x)是正弦函数(3)若f(x)不是正弦函数,则f(x)不是周期函数(4)若f(x)不是周期函数,则f(x)不是正弦函数 请你将预习中未能解决的问题和有疑惑的问题写下来,待课堂上与老师和同学探究解决。 合作探究 展示点评探究一:真值表 1. 以“若x2=1,则x=1 ”为原命题,写出它的逆命题,否命题与逆否命题,并判断这些命题的真假。2再分析其他的一些命题,你能从中发现四种命题的真假性间有什么规律吗?完成下表。原 命 题逆 命 题否 命 题逆 否 命 题真真假真假真假假由表格我们可以发现: 探究二:四种命题相互间关系1总结归纳若P,则q若q,则P原命题互 逆逆命题互否互 为 否逆互否 为 互逆 否否命题逆否命题互 逆若P,则q若q,则P由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:(1) (2) 当堂检测 1证明:若p2 q2 2,则p q 2 分析:如果直接证明这个命题比较困难,可考虑转化为对它的逆否命题的证明。将“若p2 q2 2,则p q 2”视为原命题,要证明原命题为真命题,可以考虑证明它的逆否命题“若p + q 2,则p2 + q2 2”为真命题,从而达到证明原命题为真命题的目的证明:2 证明:若x2 + y2 =0,则x y0 拓展提升 1设原命题是“等边三角形的三个内角相等”,把原命题改写成“若P,则q”的形式,并写出它的逆命题,否命题和逆否命题,然后指出它们的真假。2证明:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论