


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率的基本性质教学目标: 1.理解事件的包含关系、事件的相等、并事件(和事件)、交事件(积事件)、互斥事件、对立事件等基本概念. 2.掌握概率的基本性质. 批 注教学重点:重点是对基本概念及性质的理解, 教学难点:难点是性质的应用教学用具:投影仪教学方法:讨论、观察、类比教学过程:一、课题:(1)集合有相等、包含关系,如1,3=3,1,2,42,3,4,5等;(2)在掷骰子试验中,可以定义许多事件如:C1=出现1点,C2=出现2点,C3=出现1点或2点,C4=出现的点数为偶数师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?阅读课本P119-P121内容二、新课教学:基本概念:(1)对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B A(或AB).若B A,同时AB,那么称事件A与事件B相等,记作A=B.(2)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件),记作AB(或A+B).(3)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作AB(或AB).(4)若AB为不可能事件,即AB=,那么称事件A与事件B互斥;(5)若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件;例题分析: 例1 教材P121 例题(略) 例2 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环; 事件B:命中环数为10环;事件C:命中环数小于6环; 事件D:命中环数为6、7、8、9、10环.分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。解:A与C互斥(,B与C互斥,C与D互斥,C与D是对立事件(至少一个发生).三、课堂练习(课本P121练习第1、2、3题)归纳小结: 1)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。作业布置:习题3.1,第1- 3题教学后记:课题:概率的基本性质(2) 第 _ 课时 总序第 _个教案课型:新授课 编写时间:_年_月_日 执行时间:_年_月_日教学目标:掌握概率的基本性质.批 注教学重点:重点是对性质的理解教学难点:难点是性质的应用教学用具:投影仪教学方法:讲练结合教学过程:一、 复习提问(1)对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B A(或AB).若B A,同时AB,那么称事件A与事件B相等,记作A=B.(2)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件),记作AB(或A+B).(3)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作AB(或AB).(4)若AB为不可能事件,即AB=,那么称事件A与事件B互斥;(5)若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件;二、新课教学:(一)概率的基本性质(1)0P(A)1;(2)P(E)=1(E为必然事件);(3)P(F)=0(F为不可能事件);(4)如果事件A与事件B互斥,则P(AB)=P(A)+P(B);(5)如果事件A与事件B对立,则P(A)=1P(B).(二)例题分析:例3 抛掷一骰子,观察掷出的点数,设事件A为“出现奇数点”,B为“出现偶数点”,已知P(A)=,P(B)=,求出“出现奇数点或偶数点”分析:抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,可用运用概率的加法公式求解解:记“出现奇数点或偶数点”为事件C,则C=AB,因为A、B是互斥事件,所以P(C)=P(A)+ P(B)=+=1答:出现奇数点或偶数点的概率为1例4 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是,取到方块(事件B)的概率是,问:(1)取到红色牌(事件C)的概率是多少?(2)取到黑色牌(事件D)的概率是多少?分析:事件C是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解,事件C与事件D是对立事件,因此P(D)=1P(C)解:(1)P(C)=P(A)+ P(B)=(2)P(D)=1P(C)=例5 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?分析:利用方程的思想及互斥事件、对立事件的概率公式求解解:从袋中任取一球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”为A、B、C、D,则有P(BC)=P(B)+P(C)=;P(CD)=P(C)+P(D)=;P(BCD)=1-P(A)=1-=,解的P(B)=,P(C)=,P(D)=答:得到黑球、得到黄球、得到绿球的概率分别是、三、课堂练习(课本P121练习第4、5题)4、课堂小结:概率的基本性质:1)必然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内分泌失调病例管理分析报告
- 2025年网络工程师实践应用考试试题及答案
- 2025年网络安全监察员职业能力测评试卷及答案
- 2025浙江嘉兴海宁市硖美文旅发展有限公司招聘2人考试备考题库及答案解析
- 2025四川凉山州冕宁县第二幼儿园、第三幼儿园编制外幼儿教师10人笔试参考题库附答案解析
- 2025云南省大理州永平县博南镇卫生院见习岗招聘(6人)笔试模拟试题及答案解析
- 2025贵州六盘水六枝特区社会保险事业局招聘城镇公益性岗位3人笔试参考题库附答案解析
- 班组日常管理诊断表
- 出租车质量信誉考核课件
- 2025云南省临沧市临翔区人民医院急需紧缺专业人才引进招聘(3人)考试备考题库及答案解析
- 国家电网公司供电企业劳动定员标准
- 7-聊城东制梁场80t龙门吊安拆安全专项方案-八局一-新建郑州至济南铁路(山东段)工程ZJTLSG-2标段
- 证据目录范本
- 中兴 ZXNOE 9700 系统介绍
- GB/T 21475-2008造船指示灯颜色
- 有理数加减混合运算练习题300道-
- 园林绿化工高级技师知识考试题库(附含答案)
- 安医大生殖医学课件04胚胎的培养
- 提高肠镜患者肠道准备合格率课件
- 灭火器每月定期检查及记录(卡)表
- 关于推荐评审高级工程师专业技术职务的推荐意见报告
评论
0/150
提交评论