全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十九教时教材:正弦定理和余弦定理的复习教学与测试76、77课目的:通过复习、小结要求学生对两个定理的掌握更加牢固,应用更自如。过程:一、复习正弦定理、余弦定理及解斜三角形 二、例一 证明在ABC中=2R,其中R是三角形外接圆半径 证略 见P159 注意:1这是正弦定理的又一种证法(现在共用三种方法证明)2.正弦定理的三种表示方法(P159)例二 在任一ABC中求证:证:左边=0=右边例三 在ABC中,已知,B=45 求A、C及c解一:由正弦定理得:B=4590 即ba A=60或120当A=60时C=75 当A=120时C=15 解二:设c=x由余弦定理 将已知条件代入,整理:解之:当时 从而A=60 C=75当时同理可求得:A=120 C=15例四 试用坐标法证明余弦定理证略见P161例五 在ABC中,BC=a, AC=b, a, b是方程的两个根,且2cos(A+B)=1 求 1角C的度数 2AB的长度 3ABC的面积解:1cosC=cosp-(A+B)=-cos(A+B)=- C=1202由题设: AB2=AC2+BC2-2ACBCosC 即AB=3SABC=DCBA例六 如图,在四边形ABCD中,已知ADCD, AD=10, AB=14, BDA=60, BCD=135 求BC的长解:在ABD中,设BD=x则即 整理得:解之: (舍去)由余弦定理: 例七 (备用)ABC中,若已知三边为连续正整数,最大角为钝角,1求最大角 2求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积。解:1设三边 且C为钝角 解得 或3 但时不能构成三角形应舍去当时 2设夹C角的两边为 S当时S最大=三、作业:教学与测试76、77课中练习BCDA补充:1在ABC中,求证:2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药厂线路施工方案
- 技术方案论证与技术报告编写模板
- 直播售货营销方案
- 汉服国画活动方案策划
- 营销团队发展方案
- 云南小型活动策划方案
- 瓷砖装修施工方案
- 春季活动策划方案主题
- 运动健身俱乐部会员管理方案
- 项目管理时间线模板与风险应对方案
- GB/T 34988-2017信息技术单色激光打印机用鼓粉盒通用规范
- GB/T 15843.5-2005信息技术安全技术实体鉴别第5部分:使用零知识技术的机制
- 《等边三角形》精美教学课件
- 2023年版下肢动脉硬化闭塞症诊治指南
- 混凝土搅拌站检查验收表
- 运营管理(整合版)课件
- 门式脚手架专项施工方案(完成版)
- 公路工程投标施工组织设计浅析
- 2020超星尔雅学习通《突发事件及自救互救(上海市医疗急救中心)》章节测试答案
- 电缆桥架安装施工组织设计
- 盘锦浩业化工有限公司重整操作规程
评论
0/150
提交评论