




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
优化课堂教学设计,提高课堂教学效率一、几个基本观点 1坚持我国数学教育的优良传统(1)课程教材体系结构严谨,逻辑性强,语言叙述条理清晰,文字简洁、流畅,有利于教师组织教学,注重对学生进行基础训练等;(2)教学强调概念理解和基本技能训练,强调为学生铺设合理的认知台阶,强调变式训练等;(3)学生学习刻苦,基础扎实,运算能力和逻辑推理能力强等。2.针对问题进行改革(1)数学教学“不自然”,强加于人;(2)缺乏问题意识;(3)重结果轻过程,“掐头去尾烧中段”;(4)重解题技能、技巧轻普适性思考方法的概括,方法论层次的内容渗透不够,机械模仿多独立思考少,数学思维层次不高;(5)讲逻辑而不讲思想。3处理好数学课改中的各种矛盾关系,把握平衡不走极端而到达光辉顶点(1)学生主体与教师主导(2)接受学习与发现学习(3)基础与创新(4)数学知识、能力与情感态度(5)数学化与情境化(直观与逻辑、具体与抽象等)(6)独立思考与合作交流(7)过程与结果(8)面向全体与因材施教(9)书本知识与数学应用二、改革中应重点关注的问题1亲和力问题(1)呈现方式:自然亲切,生动活泼,激发兴趣和美感,引发学习激情。 (2)数学的内在吸引力:在体现知识归纳概括过程中的数学思想、解决各种问题中数学的力量、数学探究和论证方法的优美和精彩之处、数学的科学和文化价值等方面,引发学生的积极体验。2加强“问题性”问题引导学习(1)通过恰当的、对学生思维有适度启发性的问题,引导学生的思考和探索,经历观察、实验、猜测、推理、交流、反思等理性思维基本过程,切实改进学生的学习方式,培养问题意识,孕育创新精神。 提问题的境界:度。道而弗牵,强而弗抑,开而弗达。好问题的标准:(1)“跳一跳能够摘到的果子”(2)反映当前教学内容的本质;(3)学生经过适度努力能够解决。案例一:三角函数诱导公式的推导中的提问你能利用圆的几何性质推导出三角函数的诱导公式吗? 的终边、+180的终边与单位圆交点有什么关系?你能得出sin与sin(+180)之间的关系吗?我们可以通过查表求锐角三角函数值,那么,如何求任意角的三角函数值呢?能否将任意角的三角函数转化为锐角三角函数? 问题情境三角函数与(单位)圆是紧密联系的,它的基本性质是圆的几何性质的代数表示,例如,同角三角函数的基本关系表明了圆中的某些线段之间的关系。圆有很好的对称性:以圆心为对称中心的中心对称图形;以任意直径为对称轴的轴对称图形。你能否利用这种对称性,借助单位圆,讨论一下终边与角的终边关于原点、x轴、y轴以及直线y=x对称的角与角的关系以及它们的三角函数之间的关系?3提高思想性加强过程与联系,以数学概念的发展过程、逻辑关系组织教学内容,保持思想方法的前后一致性;以核心概念和基本思想(数及其运算、函数、空间观念、数形结合、向量、统计、随机观念、算法等)为贯穿教学过程的“灵魂”。案例二:“向量”内容的结构核心目标:1. 理解向量及其运算的意义;2. 能用向量语言和方法表述和解决数学、物理中的一些问题。向量方法的内核是利用向量表示空间基本元素,将空间的基本性质和基本定理的运用转化成为向量运算律的系统运用:点(以确定点为始点的)向量。直线一个点A、一个方向定性刻画;引进数乘向量k,可以实际控制直线上的每一个点。平面一个点A、两个不平行的(非0)向量,在“原则”上确定了平面(定性刻画);引入向量的加法+,平面上的点X就可以表示为+(以及定点A),而成为可操纵的对象。距离和角是刻画几何元素之间度量关系的基本量引进向量的数量积的定义 =|cos, 作为反映向量的长度和两个向量间夹角的关系。用向量解决问题的“三步曲”(1)建立几何与向量的联系,用向量表示问题中涉及的几何元素,将几何问题转化为向量问题;(2)通过向量运算研究几何元素之间的关系(平行、垂直),及其度量问题(如距离、夹角)等;(3)把运算结果“翻译”成几何关系。向量内容的结构顺序向量的实际背景及基本概念向量的线性运算平面(空间)向量基本定理及坐标表示向量的数量积向量应用举例4加强结构性结构良好的教学内容的特点(1)核心知识(基本概念及由内容所反映的数学思想方法)为联结点,精中求简,易学、好懂、能懂、会用,能切实减轻学生负担;(2)形成概念的网络系统,联系通畅,便于记忆与检索;(3)具有自我生长的活力,容易在新情境中引发新思想和新方法。“结构性”的几个具体要求(1)教学目标明确,削支强干,重点突出,集中精力于核心内容。(2)教学内容安排注重层次结构,张弛有序,循序渐进。由浅入深,由易到难,先简后繁,先单一后综合。(3)每堂课都围绕一个中心论题展开和深化,精心组织相关的数学成分,使相应的核心概念或重要思想成为一个有机整体,相关的数学术语、定义、符号、概念、技能等因素都得到仔细的展开;课与课之间建立精当的序列关系,保持知识的连贯性,思想方法的一致性。易错、易混淆的问题有计划地复现和纠正,使知识得到螺旋式的巩固和提高。 (4)强调科学思考方法的应用推广类比 当前内容 类比特殊化 案例三:数系扩张中的结构思想(1)度量的实际需要具有实际意义;(2)数学概念发展的内在需要: 引进新的数,定义相应的运算,使得算术运算中原来的运算律保持不变三、搞好课堂教学设计,提高教学质量和效益 1.明确教学目标,使学生保持高水平的数学思维。(1)教学目标是教学目的的系统化、具体化,是教学活动每一阶段要实现的教学结果,是衡量教学质量的标准。(2)教学目标的设计必须建立在对学生情况全面了解、对教学内容精确分析的基础上。(3)教学目标应当是可观察的。 关于教学目标分类的思考三层级模型第一层级:主成分以记忆为主要标志,培养的是以记忆为主的基本能力。测试看基本事实、方法的记忆水平,标准是:获得的知识量以及掌握的准确性。第二层级:主成分以理解为主要标志,培养的是以理解为主的基本能力,测试看能否顺利地解决常规性、通用性问题,包括能否满意地解决综合性问题。测试标准是:运用知识的水平,如正确、敏捷、灵活、深刻等。第三层级:主成分以探究为主要标志,培养以评判为主的基本能力,测试看能否对解决问题的过程进行反思,即检验过程的正确性、合理性及其优劣。标准是思维的深刻性、批判性、全面性、独创性等。案例四: 教学目标的陈述(1)反映数学的学科特点,反映当前学习内容的本质。(2)可观测:清楚陈述学习后有什么变化。例:理解函数单调性概念。 这一陈述中,需要对“理解”的含义作具体界定,以使我们能准确把握学生是否已经达到“理解”。实际上,“理解”的基本含义是学生能用概念作出判断。因此可以改述为: 能给出增函数、减函数的具体例证和图象特征;能用函数单调性定义判断一个函数的单调性。 要防止教学目标“高大全”,有的甚至是“假大空”,目标“远大”、空洞,形同虚设。例如,一堂课的目标中含有:培养学生的数学思维能力和科学的思维方式;培养学生勇于探索、创新的个性品质;体验数学的魅力,激发爱国主义热情; 等等。2.以问题引导学习,尽量采用“归纳式”,让学生经历概念的概括过程,思想方法的形成过程,这是基本而重要的。3.既讲逻辑又讲思想,引导学生通过类比、推广、特殊化等思维活动,促使他们找到研究的问题,形成研究的方法。4.使学生在建立知识的内在联系过程中领悟本质。 搞好课堂教学设计的“321”三个基本点:理解数学对数学的思想、方法及其精神的理解;理解学生对学生数学学习规律的理解,核心是理解学生的数学思维规律;理解教学对数学教学规律、特点的理解。两个关键:提好的问题在学生思维最近发展区内,有意义;设计自然的过程数学知识发生发展的原过程(再创造),学生对数学知识的认识过程。案例五: “不等式基本性质”中的提问不等式基本性质的研究可以通过类比等式的基本性质而得到启发。你能回忆一下等式的基本性质吗?考察等式的基本性质的基本思想是什么?(运算中的不变性)类似的,不等式有哪些基本性质呢?过程抽象与具体、特殊与一般的关系抽象是数学的一个公认的、最显著的特点数学的抽象是从具体中得来的,具体中蕴含了本质从具体中可以进行多次抽象可以从不同的角度进行抽象特殊化能使一般的性质得到最明显的表征案例六 正、余弦定理的推导三角形有各种几何量,如三边长、三个内角的角度、面积、外经、内径等。解三角形就是给定三角形的若干几何量,求其余几何量。你认为至少给定几个量就可以求出其余量?(从定性到定量)特殊化:解直角三角形(利用勾股定理、两个锐角互余、锐角三角函数等)。推广:能否将上述结论推广到一般三角形?在已有结果的基础上,探索新的证明方法,如:三角形面积与正弦定理、垂直投影与余弦定理、用余弦定理推导正弦定理、借助于外接圆证明正弦定理案例七 等差数列求和公式教学设计高斯如何得到求1+2+100的简便方法?一个猜测: 第一,知道常数数列求和最简单; 第二,观察到和式的特点,懂得用“平均数”思想将不同数求和化归为常数数列求和。上述猜测是从一个具体问题中归纳的,但反映了等差数列求和的最核心思想。问题引导下的教学过程你知道小高斯是如何求1+2+100的吗?这一方法的思想实质是什么(为什么要“首尾相加”)?类似的,你能求1+2+n吗?对于公差为d的等差数列an,如何利用上述思想方法求Sn=a1+a2+an?还有其他方法吗?一个核心:概括引导学生自己概括出典型实例的共同本质特征强调学生实质的、高水平的思维参与度,使学生在教学过程中保持高水平的数学思维活动在教学方式的改进中,最重要的是要让学生有自己积极地、独立地进行数学思考的空间。不管是传授式还是活动式(相应的,学生学习方式是接受式或发现式),只要学生有思维的自主,就是学生的自主地位得到体现
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 紧急医学救援基地项目建设工程方案
- 2025年智慧城市垃圾分类处理与新能源互补发展报告
- 全真模拟乐理试题及答案
- 金融行业反欺诈大数据在金融风控中的应用与优化报告
- 亲子野炊咨询活动方案
- 配管专业面试题及答案
- DB65T 4398-2021 棉花耐盐防病促生菌种衣剂和滴灌肥料施用技术规程
- DB65T 4383-2021 春播玉米减肥减药技术规程
- 英语语法大赛真题及答案
- DB65T 4335-2020 伊犁马饲养管理技术规范
- (正式版)SHT 3045-2024 石油化工管式炉热效率设计计算方法
- pvc压延膜生产工艺
- 代发客户如何做经营分析
- 冠状动脉搭桥手术后的运动康复指导与介绍
- 延长保修协议书 保修期延保承诺书
- GB/T 5008.2-2023起动用铅酸蓄电池第2部分:产品品种规格和端子尺寸、标记
- Unit3+Understanding+ideas+The+New+Age+of+Invention外研版(2019)高中英语必修第三册
- 落地式钢管脚手架验收记录表
- 老干部工作业务知识要点课件-湖南大学离退休处
- 《无人机组装与调试》-教学教案
- GA 1814.2-2023铁路系统反恐怖防范要求第2部分:旅客列车
评论
0/150
提交评论