2021版高考数学一轮复习 第三章 导数及其应用 3.2 利用导数研究函数的单调性练习 理 北师大版_第1页
2021版高考数学一轮复习 第三章 导数及其应用 3.2 利用导数研究函数的单调性练习 理 北师大版_第2页
2021版高考数学一轮复习 第三章 导数及其应用 3.2 利用导数研究函数的单调性练习 理 北师大版_第3页
2021版高考数学一轮复习 第三章 导数及其应用 3.2 利用导数研究函数的单调性练习 理 北师大版_第4页
2021版高考数学一轮复习 第三章 导数及其应用 3.2 利用导数研究函数的单调性练习 理 北师大版_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.2 利用导数研究函数的单调性核心考点精准研析考点一不含参数的函数的单调性1.函数y=xln x的单调递减区间是()a.(-,e-1)b.(e-1,+)c.(e,+)d.(0,e-1)2.函数f(x)=(x+2)exx的单调递增区间为.3.(2019浙江高考改编)函数f(x)=-34ln x+x+1的单调递减区间为_.4.(2019天津高考改编)函数f(x)=excos x的单调递增区间为_.【解析】1.选d.函数y=xln x的定义域为(0,+), 因为y=xln x,所以y=ln x+1,令y0得0x0,解得x-1+3.所以f(x)的递增区间为(-,-1-3)和(-1+3,+).答案:(-,-1-3)和(-1+3,+)3.f(x)=-34ln x+1+x的定义域为(0,+).f(x)=-34x+121+x=(1+x-2)(21+x+1)4x1+x,由x0知1+x0,21+x+10,所以由f(x)0得1+x-20,解得0x3,所以函数f(x)的单调递减区间为(0,3).答案:(0,3)4.由已知,有f(x)=ex(cos x-sin x).因此,当x2k-34,2k+4(kz)时,有sin x0,则f(x)单调递增.所以f(x)的单调递增区间为2k-34,2k+4(kz).答案:2k-34,2k+4(kz)题2中,若将“f(x)=(x+2)exx”改为“f(x)=x2ex”,则函数f(x)的单调递减区间是_.【解析】因为f(x)=x2ex,所以f(x)=2xex+x2ex=(x2+2x)ex.由f(x)0,解得-2x0,解集在定义域内的部分为单调递增区间.(4)解不等式f (x)0,试讨论函数f(x)的单调性.【解题导思】序号题目拆解(1)求f(x),解方程f(x)=0求f(x)的定义域,求f(x)并进行恰当的因式分解,求出方程f(x)=0的根(2)由f(x)的符号确定f(x)的单调性用导数为零的实数分割定义域,逐个区间分析导数的符号,确定单调性【解析】因为f(x)=ln x+ax2-(2a+1)x, 所以f(x)=2ax2-(2a+1)x+1x=(2ax-1)(x-1)x,由题意知函数f(x)的定义域为(0,+), 令f(x)=0得x=1或x=12a,(1)若12a12,由f(x)0得x1或0x12a,由f(x)0得12ax1,即0a0得x12a或0x1, 由f(x)0得1x12a, 即函数f(x)在(0,1),12a,+上单调递增, 在1,12a上单调递减; (3)若12a=1,即a=12,则在(0,+)上恒有f(x)0, 即函数f(x)在(0,+)上单调递增.综上可得:当0a12时,函数f(x)在0,12a上单调递增, 在12a,1上单调递减,在(1,+)上单调递增.解决含参数的函数的单调性问题应注意两点 (1)研究含参数的函数的单调性问题,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(2018全国卷i改编)已知函数fx=1x-x+aln x,讨论fx的单调性.【解析】f(x)的定义域为(0,+),f(x)=-1x2-1+ax=-x2-ax+1x2.(1)若a2,则f(x)0,当且仅当a=2,x=1时f(x)=0,所以f(x)在(0,+)上单调递减.(2)若a2,令f(x)=0得,x=a-a2-42或x=a+a2-42.当x0,a-a2-42a+a2-42,+时,f(x)0.所以f(x)在0,a-a2-42,a+a2-42,+上单调递减,在a-a2-42,a+a2-42上单调递增.考点三利用导数解决函数单调性的应用问题命题精解读1.考什么:(1)考查函数图像的识别、比较大小或解不等式、根据函数的单调性求参数等问题.(2)考查直观想象、数学运算、逻辑推理的核心素养及数形结合、转化与化归的思想方法.2.怎么考:与基本初等函数、不等式等综合考查函数的图像及函数的单调性的应用等问题.3.新趋势:以导数法研究函数单调性为基础,综合考查利用单调性比较大小、解不等式及知单调性求参数的范围.学霸好方法由函数的单调性求参数的取值范围的方法 (1)可导函数在区间d上单调,实际上就是在该区间上f (x)0(或f (x)0)恒成立,从而构建不等式, 求出参数的取值范围,要注意“=”是否可以取到.(2)可导函数在区间d 上存在单调区间,实际上就是f (x)0(或f (x)0(或f (x)min0时,g(x)g(0)=0,故x0时,f(x)=xg(x),f(x)=g(x)+xg(x)0,即f(x)在(0,+)上单调递增,故只有a符合题意.辨别函数的图像主要从哪几个角度分析?提示:从函数奇偶性、单调性、最值及函数图像所过的特殊点等角度分析.比较大小或解不等式【典例】(2019兰州模拟)函数f(x)在定义域r内可导,f(x)=f(4-x),且(x-2)f(x)0.若a=f(0),b=f12,c=f(3),则a,b,c的大小关系是()a.cbab.cabc.abcd.bac【解析】选c.由f(x)=f(4-x)可知,f(x)的图像关于直线x=2对称,根据题意知,当x(-,2)时,f(x)0,f(x)为增函数.所以f(3)=f(1)f12f(0),即cb0,且当x趋向于-时,g(x)趋向于0,所以0a,即a的取值范围是(-,0.答案:-1(-,0函数f(x)在某区间上是增函数,推出f(x)0还是f(x)0?提示:推出f(x)0.1.设函数y=f(x)在定义域内可导,y=f(x)的图像如图所示,则导函数y=f(x)可能为()【解析】选d.由题意得,当x0;当x0时,函数y=f(x)先增再减然后再增,故导函数的符号为先正再负然后再正.结合所给选项可得d符合题意.2.已知函数f(x)是函数f(x)的导函数,f(1)=1e,对任意实数都有f(x)-f(x)0,设f(x)=f(x)ex,则不等式f(x)0,则有f(x) 0,即函数f(x)在r上为减函数,又由f(1)=1e,则f(1)=f(1)e=1e2,不等式f(x)1e2等价于f(x)1,则不等式的解集为(1,+).3.若f(x)=2x3-3x2-12x+3在区间m,m+4上是单调函数,则实数m的取值范围是_.【解析】因为f(x)=2x3-3x2-12x+3,所以f(x)=6x2-6x-12=6(x+1)(x-2),令f(x)0,得x2;令f(x)0,得-1x0,则g(x)=ln

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论