全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
向量基础知识梳理1向量:既有_,又有_的量叫向量2向量的几何表示:以A为起点,B为终点的向量记作_3向量的有关概念:(1)零向量:长度为_的向量叫做零向量,记作_(2)单位向量:长度为_的向量叫做单位向量(3)相等向量:_且_的向量叫做相等向量(4)平行向量(共线向量):方向_的_向量叫做平行向量,也叫共线向量记法:向量a平行于b,记作_规定:零向量与_平行1向量的加法法则(1)三角形法则如图所示,已知非零向量a,b,在平面内任取一点A,作a,b,则向量_叫做a与b的和(或和向量),记作_,即ab_上述求两个向量和的作图法则,叫做向量求和的三角形法则对于零向量与任一向量a的和有a0_(2)平行四边形法则如图所示,已知两个不共线向量a,b,作a,b,则O、A、B三点不共线,以_,_为邻边作_,则对角线上的向量_ab,这个法则叫做两个向量求和的平行四边形法则2向量加法的运算律(1)交换律:ab_(2)结合律:(ab)c_3向量的减法(1)定义:aba(b),即减去一个向量相当于加上这个向量的_(2)作法:在平面内任取一点O,作a,b,则向量ab_如图所示(3)几何意义:如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为_,被减向量的终点为_的向量例如:_1向量数乘运算实数与向量a的积是一个_,这种运算叫做向量的_,记作_,其长度与方向规定如下:(1)|a|_(2)a (a0)的方向;特别地,当0或a0时,0a_或0_2向量数乘的运算律(1)(a)_(2)()a_(3)(ab)_特别地,有()a_;(ab)_3共线向量定理向量a (a0)与b共线,当且仅当有唯一一个实数,使_4向量的线性运算向量的_、_、_运算统称为向量的线性运算,对于任意向量a、b,以及任意实数、1、2,恒有(1a2b)_1平面向量基本定理(1)定理:如果e1,e2是同一平面内的两个_向量,那么对于这一平面内的_向量a,_实数1,2,使a_(2)基底:把_的向量e1,e2叫做表示这一平面内_向量的一组基底2. 两向量的夹角与垂直(1)夹角:已知两个_a和b,作a,b,则_ (0180),叫做向量a与b的夹角范围:向量a与b的夹角的范围是_当0时,a与b_.当180时,a与b_.(2)垂直:如果a与b的夹角是_,则称a与b垂直,记作_3平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个_的向量,叫作把向量正交分解(2)向量的坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个_i,j作为基底,对于平面内的一个向量a,有且只有一对实数x,y使得a_,则_叫作向量a的坐标,_叫作向量的坐标表示(3)向量坐标的求法:在平面直角坐标系中,若A(x,y),则_,若A(x1,y1),B(x2,y2),则_1平面向量的坐标运算(1)若a(x1,y1),b(x2,y2),则ab_,即两个向量和的坐标等于这两个向量相应坐标的和(2)若a(x1,y1),b(x2,y2),则ab_,即两个向量差的坐标等于这两个向量相应坐标的差(3)若a(x,y),R,则a_,即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标2两向量共线的坐标表示设a(x1,y1),b(x2,y2)(1)当ab时,有_(2)当ab且x2y20时,有_即两向量的相应坐标成比例3若,则P与P1、P2三点共线当_时,P位于线段P1P2的内部,特别地1时,P为线段P1P2的中点;当_时,P位于线段P1P2的延长线上;当_时,P位于线段P1P2的反向延长线上1平面向量数量积(1)定义:已知两个非零向量a与b,我们把数量_叫做a与b的数量积(或内积),记作ab,即ab|a|b|cos ,其中是a与b的夹角(2)规定:零向量与任一向量的数量积为_(3)投影:设两个非零向量a、b的夹角为,则向量a在b方向的投影是_,向量b在a方向上的投影是_2数量积的几何意义ab的几何意义是数量积ab等于a的长度|a|与b在a的方向上的投影_的乘积3向量数量积的运算律(1)ab_(交换律);(2)(a)b_(结合律);(3)(ab)c_(分配律)1平面向量数量积的坐标表示若a(x1,y1),b(x2,y2),则ab_即两个向量的数量积等于_2两个向量垂直的坐标表示设两个非零向量a(x1,y1),b(x2,y2),则ab_3平面向量的模(1)向量模公式:设a(x1,y1),则|a|_(2)两点间距离公式:若A(x1,y1),B(x2,y2),则|_4向量的夹角公式设两非零向量a(x1,y1),b(x2,y2),a与b的夹角为,则cos _向量方法在几何中的应用(1)证明线段平行问题,包括相似问题,常用向量平行(共线)的等价条件:ab(b0)_(2)证明垂直问题,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水厂污泥处理与资源化利用方案
- 零碳园区废热与余热利用技术
- BIM技术在建筑项目竣工验收管理中的应用
- 数控机床生产线项目投资计划书
- 住院医师规范化培训《精神科》模拟试题+答案
- 运动医学习题库+答案
- 招聘护士考试题及答案
- 计量经济学复习重点及答案
- 水杨酰胺安全培训试题带答案
- 2025年物业管理师考试培训试卷 知识点梳理与解题技巧
- 山东会考历年会考题及答案
- GB/T 14646-2025轿车翻新轮胎
- 2024年广东省华南师范大学附属小学招聘教师笔试真题
- 湿法冶金技术
- 伦理冲突案例分析-深度研究
- 人教版三年级上册数学分类专项练习集+奥林匹克竞赛难题试卷集
- 生物反应器设备验证方案
- 2024-2025学年成都市高一上英语期末考试题(含答案和音频)
- 内镜中心预防跌倒措施
- 送样品协议书范本
- 沪教牛津版七年级上册英语教材
评论
0/150
提交评论