大学物理D-06振动和波-参考答案_第1页
大学物理D-06振动和波-参考答案_第2页
大学物理D-06振动和波-参考答案_第3页
大学物理D-06振动和波-参考答案_第4页
大学物理D-06振动和波-参考答案_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 大学物理 D练习6.1.1弹簧振子的简单共振动作,其振动曲线如图所示。 由于周期T=s 11 24到24,因此馀弦函数描述时间相位=32。 6.1.2产生机械波的必要条件是传播波源和机械波的介质。 6.1.3一平面谐波的周期为2.0s,波的传播路径上有2.0cm的m、n两点,n点的比特为m点的/6/,该波的波长为24cm,波速为12m/s。 的双曲馀弦值。 来自位于6.1.4原点(x=0)的单波源的平面谐波的波动方程式是) cos(cxbty,其中,a、b、c是常数。 该波速为C B;波的周期为b2的波长c2; 离波源距离为l的质量体的振动相位比波源滞后的lC; 该质量元素的初始相位为LC。 6.1.5单平面谐波沿ox轴正向传播,波动方程为4)(cosuvtay,1lx处质点的振动方程为4)(cos1uvtay,2lx处质点的振动与1lx处质点的振动的相位差为12uvll12 )。 二、选择问题6.2.1弹簧振子,将其水平放置,它就能做出简单的谐振动作。 将其垂直放置或放置在光滑的斜面上时,可以判断以下情况正确: C (A )垂直放置时为简单的共振动作,(b )在光滑的斜面上不能进行简单的共振动作,(c )在光滑的斜面上进行简单的共振动作,(d )在这两种情况下都能进行简单的共振动作6.2.2两个简谐振荡的振荡曲线如图所示, A (A)A进制/2/; (B)A落后/2/; (C)A在前进,(D)A落后。 6.2.3一个质点作简单的共振动作,周期为t,质点从平衡位置向x轴正方向运动时,从平衡位置到二分之一的最大位移的路程所需的最短时间为: B (A)T/4; (B)T/12 (C)T/6 (D)T/8。 如果示出6.2.4单平面馀弦波t=0时刻的波形图,则o点的振动初始相0,如果示出 D (A)0. (B)/2 (C) (D)3/2或(-/2) 6.2.5单平面谐波沿x轴正方向传播、波速为u=160m/s、t=0时刻的波形图,则该xtob(mx)(sto422波(b)2440cos(3xtym; (c)2440cos(3xtym; (d)2440cos(3xtym )。 6.2.6两相干平面的谐波向不同方向传播,如图所示,波速为smu/40. 0,其中一系列波在a点产生的振动方程为)2cos(11tay,另一系列波在b点产生的振动方程为)2cos(22tay,它们在p点相遇,mAP80. 0,mAP80. 0 ) (B)/2; (c) (D)3/2。 三、如果简单解答6.3.1点和2波源S1和S2的距离相等,p点的振幅保持为零,那么S1和S2分别导出的2列简单谐波在p点引起的2个简单谐振动作应该满足什么条件? a :两个简单谐振动作的振动方向相同,振动频率相等,振幅相等,相位差为.4,计算问题为6.4. 1有两个相同方向,相同频率的简单谐振动作,它们的振动式为:4.310cos05.0tx,4.10cos06.0tx(si制) (1)求出它们的合成振动的振幅和初始相位(2)有其他振动时) 10cos(07.003tx,0的值,31 xx 的振幅最大,0为什么值小,32 xx 的振幅最小。解: (1) (078.006.005.02221 maaa 8484,84398.3952002 ATG (2)最大幅度为31100,43xx。 (my)(mx3o48up1s2sb2ab2a1a4xo3t的振幅最小或32200200)4(45) xx振幅最大时,32120000、8484、0xxxo6.4.2已知的平面谐波的公式分别为y=0.25cos(125t 0.37x)(SI) (1) 在x2=25m两点求出质点的振动方程式(2)求出x1、x2的两点间的振动相位差(3)求出x1点在t=4s的振动位移。 解:1)xm 1 10 的振动方程为xtytsi10.25cos1253.7xm125的振动方程为xtytsi10.25cos1259.25(2)x1和x2这两点之间的振动相位差为trad12(1270.37*10)(1270.37*25 ) 关于5.55x1与原点2点间振动相位差,rad10.7x2与原点2点间的振动相位差为rad20.25(3),x1点在t=4s的振动位移为XT sym 10、40.25 cos 12543.70.249.4.3一列沿x的正方向传播的高次谐波,01t与st25. 0 2 时(假定周期sT25. 0 )根据(1)求出p点振动式(2)该波的波动表达式:mA2 . 0、m6.0、/(6. 025.015.0 smttu ) (1.6.0.0ssst为波动式) cos0usxty为t=0和t=0.25时的波形图,求出0cos| 得到000ayt,0 sin|000 a vt 20 (2)波动式为 23102 cos 2.02)6.0(12 cos 2.0 ) (cos 0xtxtxtxtusttoyo点的振动式为 2 2cos2 . 0即23102cos2.0txyp6.4.4横波(1)求出该波的振幅、波速、频率和波长。 (2)求出绳索上各质点振动的最大速度和最大加速度。 (求出x=0.2m时质点在t=1s时的相位,那么质点在原点是什么时刻的相位? 解(1) (4.3110 )、(05.011 SSMA 2.0 ) (my ) (MX 45.0 o 2.0 P0 tst 25.0 kvo4mmvmsmkszv5.0.5.2)/(5. 24 10 ) (2. 05 11 )、(0.52表示方程式为0.05cos2/51/2txysi和标准方程式0 (、 (cos2txyttat )0. 05 ()、0.2、0.5amtsm、0.511 2.5/、5.0.20.2 umshztt (2) )/(57.15.01005.0222 SMA SMM (3) ) (92.010 0410 ) 8.0(2.92.04110stt或x=0.2m时的质点比原点延迟的相位差为tt020(1040)(1040.2)0.86.4.5以1 S和2 S为两相干波源,初始相位差为4。确定当两个波在连接1 S和2 S的方向上传时每个点引起振动的振幅为a并且由于干扰在连接1 S和2 S的线之间产生振幅为2A的点的位置,而不管距离如何。 解:设离p点的1 S距离为x,则离p点的2 S距离为4x212010rr(4xx)4x227,满足2k时,p点因干扰而振动变强,振幅为2A、17()24xk,当k3、2、10、1、2、3、4时,x44xk 如果满足(2k1 ),则p点由于干扰而减弱振动,并且当振幅为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论