




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理,从前有个财主,想教儿子识字,请来一位教书先生.先生把着学生的笔杆儿,写一横,告诉是个“一”字;写两横,告诉是个“二”字;写三横,告诉是个“三”字.学到这里,儿子就告诉父亲说:“我已经学会了写字,不用先生再教了.”于是,财主就把教书先生给辞退了.,一天,财主要邀请一位姓万的朋友,叫儿子写张请帖.,财主的儿子怎么写的?,1.理解归纳推理、类比推理的概念,掌握归纳推理、类比推理的方法技巧.(重点)2.掌握归纳法的步骤,体会归纳推理、类比推理在数学发现中的作用(难点),探究点1归纳推理,【1】1742年哥德巴赫(Goldbach,16901764,是德国一位中学教师,也是一位著名的数学家,1725年当选为俄国彼得堡科学院院士)观察到:,猜想:任何一个不小于6的偶数都等于两个奇质数之和.,任何一个不小于6的偶数都等于两个奇质数之和.,哥德巴赫猜想,哥德巴赫猜想的过程:,具体的材料,观察分析,猜想出一般性的结论,由某类事物的具有某些特征,推出该类事物的都具有这些特征的推理,或者由概括出的推理,称为归纳推理(简称归纳).,归纳推理,特点:部分整体,个别一般.,铜、铁、铝、金、银等金属都能导电,,猜想:所有金属都导电.,又如,猜想:,部分对象,全部对象,个别事实,一般结论,分析:数列的通项公式表示的是数列an的第n项an与序号n之间的对应关系.为此,我们先根据已知的递推公式,算出数列的前几项.,解:当n=1时,a1=1;,当n=2时,,当n=3时,,当n=4时,,观察可得,数列的前4项都等于相应序号的倒数.由此猜想,这个数列的通项公式为,春秋时代的鲁班在林中砍柴时被齿形草叶割破了手,他由此受到启发从而发明了锯.,探究点2类比推理,类似于鲁班发明锯子,还有一些发明或发现也是这样得到的.,鱼类,潜水艇,蜻蜓,直升机,仿生学中许多发明的最初构想都是类比生物机制得到的.,可能有生命存在,有生命存在,温度适合生物的生存,一年中有四季的变更,有大气层,行星、围绕太阳运行、绕轴自转,火星,地球,火星上是否有生命?,火星与地球类比的思维过程:,火星,地球,存在类似特征,类比推理的过程(步骤),观察、比较,联想、类推,猜想新结论,由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理.,类比推理,(1)类比推理是由特殊到特殊的推理.,(2)运用类比推理常常先要寻找合适的类比对象,我们可以从不同的角度出发确定类比对象,基本原则是要根据当前问题的需要,选择适当的类比对象.,(1)类比是从人们已经掌握的事物的属性,推断正在研究中的事物的属性,它以已有知识为基础,类比出新的结论.,(2)是从一事物的特殊属性推断另一种事物的特殊属性.,(3)类比的结果具有猜测性.,类比推理的特点,例2类比实数的加法和乘法,列出它们相似的运算性质.,分析:实数的加法和乘法都是由两个数参与的运算,都满足一定的运算律,都存在逆运算,而且“0”和“1”分别在加法和乘法中占有特殊的地位.因此,我们可以从上述4个方面来类比这两种运算.,解:(1)两个实数经过加法运算或乘法运算后,所得的结果仍然是一个实数.,(2)从运算律的角度考虑,加法和乘法都满足交换律和结合律,即,(3)从逆运算的角度考虑,二者都有逆运算,加法的逆运算是减法,乘法的逆运算是除法,这就使得方程,都有唯一解,(4)在加法中,任意实数与0相加都不改变大小;乘法中的1与加法中的0类似,即任意实数与1的积都等于原来的数.即,三角形,思考:你认为平面几何中的哪一类图形可以作为四面体的类比对象?,例3:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想,分析:考虑到直角三角形的两条边互相垂直,我们可以选取有3个面两两垂直的四面体,作为直角三角形的类比对象.,解:如上图,在RtABC中,C=90.设a,b,c分别表示三条边的长度,由勾股定理,得,类比勾股定理的结构,我们猜想,成立.,【总结提升】,提出猜想,观察、分析、比较、联想,归纳、类比,从具体问题出发,通俗地说,合情推理是指“合乎情理”的推理.,例4如图所示,有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.,1.每次只能移动1个金属片;2.较大的金属片不能放在较小的金属片上面.试推测:把n个金属片从1号针移到3号针,最少需要移动多少次?,分析:我们从移动1,2,3,4个金属片的情形入手,探究其中的规律性,进而归纳出移动n个金属片所需的次数.,解:当n=1时,只需把金属片从1号针移到3号针,用符号(13)表示,共移动了1次.当n=2时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动顺序是:,(1)把第1个金属片从1号针移到2号针;(2)把第2个金属片从1号针移到3号针;(3)把第1个金属片从2号针移到3号针;用符号表示为:(12)(13)(23)共移动了3次.当n=3时,把上面两个金属片作为一个整体,归结为n=2的情形,移动顺序是:(1)把上面两个金属片从1号针移到2号针;,(2)把第3个金属片从1号针移到3号针;(3)把上面两个金属片从2号针移到3号针;其中(1)和(3)都需要借助中间针.用符号表示为:(13)(12)(32);(13);(21)(23)(13)共移动了7次.当n=4时,把上面3个金属片作为一个整体,移动顺序是:(1)把上面3个金属片从1号针移到2号针;,(2)把第4个金属片从1号针移到3号针;(3)把上面3个金属片从2号针移到3号针;用符号表示为:(12)(13)(23)(12)(31)(32)(12);(13);(23)(21)(31)(23)(12)(13)(23).共移动了15次.至此,我们得到依次移动1,2,3,4个金属片所需次数构成的数列.,1,3,7,15.观察这个数列,可以发现其中蕴含着如下规律:,由此我们猜想:若把n个金属片从1号针移到3号针,最少需要移动an次,则数列an的通项公式为:,思考:把n个金属片从1号针移到3号针,怎样移动才能达到最少的移动次数呢?,通过探究上述n=1,2,3,4时的移动方法,我们可以归纳出对n个金属片都适用的移动方法.当移动n个金属片时,可分为下列3个步骤:,(1)把上面(n-1)个金属片从1号针移到2号针;(2)把第n个金属片从1号针移到3号针;(3)把上面(n-1)个金属片从2号针移到3号针.,这样就把移动n个金属片的任务,转化为移动两次(n-1)个金属片和移动一次第n个金属片的任务.而移动(n-1)个金属片需要移动两次(n-2)个金属片和移动一次第(n-1)个金属片,移动(n-2)个金属片需要移动两次(n-3)个金属片和移动一次第(n-2)个金属片如此继续.直到转化为移动1个金属片的情形.根据这个过程,可得递推公式,从这个递推公式出发,可以证明(1)式是正确的.,一般来说,由合情推理所获得的结论,仅仅是一种猜想,未必可靠.,费马猜想:,同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市2025商务部国际经济合作事务局招聘应届毕业生2人笔试历年参考题库附带答案详解
- 黔西南布依族苗族自治州2025贵州黔西南州望谟县事业单位引进高层次人才和急需紧缺人才17人笔试历年参考题库附带答案详解
- 2025重庆发展投资有限公司及所属企业招聘15人笔试参考题库附带答案详解
- 2025江苏无锡市宜兴市诚信人力资源服务有限公司招聘17人笔试参考题库附带答案详解
- 2025年甘肃省张掖市肃南裕固风情走廊旅游景区招聘22人笔试参考题库附带答案详解
- 2025年河北廊坊文安县城市建设发展有限公司招聘工作人员20名笔试参考题库附带答案详解
- 2025年吉林省国华资产管理有限责任公司所属企业吉林省东风化工有限责任公司公开招聘1人笔试参考题库附带答案详解
- 2025山东济清控股集团有限公司招聘24人笔试参考题库附带答案详解
- 2025中材科技(锡林郭勒)风电叶片有限公司招聘32人笔试参考题库附带答案详解
- 危险物资管理安全培训课件
- 2022新高考I卷II卷英语读后续写解读讲评及写作技巧指导课件
- YY/T 0466.1-2023医疗器械用于制造商提供信息的符号第1部分:通用要求
- 教师节主题班会课件PPT
- 汉字课第一课(汉语国际教育)课件
- 安徽省物业管理行业专题调研分析报告
- 英语外研八年级上册群文阅读课PPT 韩茜
- 食品安全与日常饮食知到章节答案智慧树2023年中国农业大学
- IE七大手法培训教材人机作业图
- GB/T 9766.3-2016轮胎气门嘴试验方法第3部分:卡扣式气门嘴试验方法
- GB/T 22751-2008台球桌
- 《智慧养老》方案ppt
评论
0/150
提交评论