高二数学 圆锥曲线题型分类训练_第1页
高二数学 圆锥曲线题型分类训练_第2页
高二数学 圆锥曲线题型分类训练_第3页
高二数学 圆锥曲线题型分类训练_第4页
高二数学 圆锥曲线题型分类训练_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高二数学 圆锥曲线题型分类训练一、有关求值问题1.已知抛物线C:y22px(p0)的焦点为F,直线y4与y轴的交点为P,与C的交点为Q,且|QF|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程2.圆x2y24的切线与x轴正半轴,y轴正半轴围成个三角形,当该三角形面积最小时,切点为P(如图)双曲线C1:1过点P且离心率为.(1)求C1的方程;(2)椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点若以线段AB为直径的圆过点P,求l的方程3.已知抛物线:,圆:的圆心为点M()求点M到抛物线的准线的距离;()已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂直于AB,求直线的方程二、有关证明问题4.如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)当直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k0,求证:PAPB5.已知曲线.(1)若曲线是焦点在轴上的椭圆,求的取值范围;(2)设,曲线与轴的交点为,(点位于点的上方),直线与曲线交于不同的两点,直线与直线交于点,求证:,三点共线.三、有关求范围和最值问题6.椭圆C:(ab0)的离心率为,其左焦点到点P(2,1)的距离为不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分()求椭圆C的方程;() 求ABP的面积取最大时直线l的方程7.已知椭圆C:1(ab0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形(1)求椭圆C的标准方程(2)设F为椭圆C的左焦点,T为直线x3上任意一点,过F作TF的垂线交椭圆C于点P,Q.证明:OT平分线段PQ(其中O为坐标原点);当最小时,求点T的坐标8.如图,O为坐标原点,椭圆C1:1(ab0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:1的左、右焦点分别为F3,F4,离心率为e2.已知e1e2,且|F2F4|1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值9.在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为()求抛物线的方程;()是否存在点,使得直线与抛物线相切于点若存在,求出点的坐标;若不存在,说明理由;()若点的横坐标为,直线与抛物线有两个不同的交点,与圆有两个不同的交点,求当时,的最小值10.椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。()求C1,C2的方程;()设C2与y轴的焦点为M,过坐标原点O的直线与C2相交于点A,B,直线MA,MB分别与C1相交与D,E(i)证明:MDME;(ii)记MAB,MDE的面积分别是问:是否存在直线l,使得?请说明理由。四、有关定点定值问题11.在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2y2=9外,且对C1上任意一点M,M到直线x=2的距离等于该点与圆C2上点的距离的最小值.()求曲线C1的方程;()设P(x0,y0)(y03)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线x=4上运动时,四点A,B,C,D的纵坐标之积为定值.12.如图所示,已知双曲线C:y21(a0)的右焦点为F,点A,B分别在C的两条渐近线上,AFx轴,ABOB,BFOA(O为坐标原点) (1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y00)的直线l:y0y1与直线AF相交于点M,与直线x相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值13.已知抛物线C:y22px(p0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|FD|.当点A的横坐标为3时,ADF为正三角形(1)求C的方程(2)若直线l1l,且l1和C有且只有一个公共点E.证明直线AE过定点,并求出定点坐标ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由14.如图,在平面直角坐标系中,椭圆的左、右焦点分别为,已知和都在椭圆上,其中为椭圆的离心率(1)求椭圆的方程;(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P(i)若,求直线的斜率;(ii)求证:是定值五、有关探究性问题15.在平面直角坐标系中,已知椭圆的离心率,且椭圆上的点到的距离的最大值为;(1)求椭圆的方程;(2)在椭圆上,是否存在点使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及相对应的的面积;若不存在,请说明理由.16.如图,椭圆经过点离心率,直线的方程为.(1)求椭圆的方程;(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为问:是否存在常数,使得?若存在求的值;若不存在,说明理由.17.如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为,.记,和的面积分别为和.(I)当直线与轴重合时,若,求的值;(II)当变化时,是否存在与坐标轴不重合的直线,使得?并说明理由.18.如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线lMN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D(I)设,求与的比值;(II)当e变化时,是否存在直线l,使得BOAN,并说明理由一、有关求值问题(2020年之后高考题)1.已知抛物线C:y22px(p0)的焦点为F,直线y4与y轴的交点为P,与C的交点为Q,且|QF|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程21解:(1)设Q(x0,4),代入y22px,得x0,所以|PQ|,|QF|x0.由题设得,解得p2(舍去)或p2,所以C的方程为y24x.(2)依题意知l与坐标轴不垂直,故可设l的方程为xmy1(m0)代入y24x,得y24my40.设A(x1,y1),B(x2,y2),则y1y24m,y1y24.故线段的AB的中点为D(2m21,2m),|AB|y1y2|4(m21)又直线l 的斜率为m,所以l 的方程为xy2m23.将上式代入y24x,并整理得y2y4(2m23)0.设M(x3,y3),N(x4,y4),则y3y4,y3y44(2m23)故线段MN的中点为E,|MN|y3y4|.由于线段MN垂直平分线段AB,故A,M,B,N四点在同一圆上等价于|AE|BE|MN|,从而|AB|2|DE|2|MN|2,即4(m21)2,化简得m210,解得m1或m1,故所求直线l的方程为xy10或xy102.圆x2y24的切线与x轴正半轴,y轴正半轴围成个三角形,当该三角形面积最小时,切点为P(如图16所示)双曲线C1:1过点P且离心率为.图16(1)求C1的方程;(2)椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点若以线段AB为直径的圆过点P,求l的方程20解:(1)设切点坐标为(x0,y0)(x00,y00),则切线斜率为,切线方程为yy0(xx0),即x0xy0y4,此时两个坐标轴的正半轴与切线的交点分别为,.故其围成的三角形的面积S.由xy42x0y0知,当且仅当x0y0时x0y0有最大值2,此时S有最小值4,因此点P的坐标为(,)由题意知解得a21,b22,故C1的方程为x21.(2)由(1)知C2的焦点坐标为(,0),(,0),由此可设C2的方程为1,其中b10.由P(,)在C2上,得1,解得b3,因此C2的方程为1.显然,l不是直线y0.设直线l的方程为xmy,点A(x1,y1),B(x2,y2),由得(m22)y22 my30.又y1,y2是方程的根,因此由x1my1,x2my2,得因为(x1,y1),(x2,y2),由题意知0,所以x1x2(x1x2)y1y2(y1y2)40,将代入式整理得2m22 m4 110,解得m1或m1.因此直线l的方程为x(1)y0或x(1)y0.3.已知抛物线:,圆:的圆心为点M()求点M到抛物线的准线的距离;()已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂直于AB,求直线的方程本题主要考查抛物线的几何性质,直线与抛物线、圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。满分15分。 (I)解:由题意可知,抛物线的准线方程为: 所以圆心M(0,4)到准线的距离是(II)解:设,则题意得,设过点P的圆C2的切线方程为,即则即,设PA,PB的斜率为,则是上述方程的两根,所以将代入由于是此方程的根,故,所以由,得,解得即点P的坐标为,所以直线的方程为二、有关证明问题4.如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)当直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k0,求证:PAPB本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分.解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过坐标原点,所以(2)直线PA的方程解得于是直线AC的斜率为(3)解法一:将直线PA的方程代入则故直线AB的斜率为其方程为解得.于是直线PB的斜率因此解法二:设.设直线PB,AB的斜率分别为因为C在直线AB上,所以从而因此5.已知曲线.(1)若曲线是焦点在轴上的椭圆,求的取值范围;(2)设,曲线与轴的交点为,(点位于点的上方),直线与曲线交于不同的两点,直线与直线交于点,求证:,三点共线.解:(1)原曲线方程可化简得:由题意可得:,解得:(2)由已知直线代入椭圆方程化简得:,解得:由韦达定理得:,设,方程为:,则,欲证三点共线,只需证,共线即成立,化简得:将代入易知等式成立,则三点共线得证。(lby lfx)三、有关求范围和最值问题6.如图,椭圆C:(ab0)的离心率为,其左焦点到点P(2,1)的距离为不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分()求椭圆C的方程;() 求ABP的面积取最大时直线l的方程【解析】()由题:; (1)左焦点(c,0)到点P(2,1)的距离为: (2)由(1) (2)可解得:所求椭圆C的方程为:()易得直线OP的方程:yx,设A(xA,yA),B(xB,yB),R(x0,y0)其中y0x0A,B在椭圆上,设直线AB的方程为l:y(m0),代入椭圆:显然m且m0由上又有:m,|AB|点P(2,1)到直线l的距离为:SABPd|AB|m-4|=,此时直线l的方程7.已知椭圆C:1(ab0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形(1)求椭圆C的标准方程(2)设F为椭圆C的左焦点,T为直线x3上任意一点,过F作TF的垂线交椭圆C于点P,Q.证明:OT平分线段PQ(其中O为坐标原点);当最小时,求点T的坐标20解:(1)由已知可得解得a26,b22,所以椭圆C的标准方程是1.(2)证明:由(1)可得,F的坐标是(2,0),设T点的坐标为(3,m),则直线TF的斜率kTFm.当m0时,直线PQ的斜率kPQ.直线PQ的方程是xmy2.当m0时,直线PQ的方程是x2,也符合xmy2的形式设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m23)y24my20,其判别式16m28(m23)0.所以y1y2,y1y2,x1x2m(y1y2)4.设M为PQ的中点,则M点的坐标为.所以直线OM的斜率kOM,又直线OT的斜率kOT,所以点M在直线OT上,因此OT平分线段PQ.由可得,|TF|,|PQ|.所以.当且仅当m21,即m1时,等号成立,此时取得最小值故当最小时,T点的坐标是(3,1)或(3,1)8.如图17,O为坐标原点,椭圆C1:1(ab0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:1的左、右焦点分别为F3,F4,离心率为e2.已知e1e2,且|F2F4|1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值图1721解: (1)因为e1e2,所以,即a4b4a4,因此a22b2,从而F2(b,0),F4(b,0),于是bb|F2F4|1,所以b1,a22.故C1,C2的方程分别为y21,y21.(2)因AB不垂直于y轴,且过点F1(1,0),故可设直线AB的方程为xmy1,由得(m22)y22my10.易知此方程的判别式大于0.设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1y2,y1y2.因此x1x2m(y1y2)2,于是AB的中点为M,故直线PQ的斜率为,PQ的方程为yx,即mx2y0.由得(2m2)x24,所以2m20,且x2,y2,从而|PQ|22.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d.因为点A,B在直线mx2y0的异侧,所以(mx12y1)(mx22y2)0,于是|mx12y1|mx22y2|mx12y1mx22y2|,从而2d.又因为|y1y2|,所以2d.故四边形APBQ的面积S|PQ|2d2.而00)的右焦点为F,点A,B分别在C的两条渐近线上,AFx轴,ABOB,BFOA(O为坐标原点)图17(1)求双曲线C的方程;(2)过C上一点P(x0,y0)(y00)的直线l:y0y1与直线AF相交于点M,与直线x相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值20解:(1)设F(c,0),因为b1,所以c.由题意,直线OB的方程为yx,直线BF的方程为y(xc),所以B.又直线OA的方程为yx,则A,所以kAB.又因为ABOB,所以1,解得a23,故双曲线C的方程为y21.(2)由(1)知a,则直线l的方程为y0y1(y00),即y(y00)因为直线AF的方程为x2,所以直线l与AF的交点为M,直线l与直线x的交点为N,则.又P(x0,y0)是C上一点,则y1,代入上式得,所以,为定值13.已知抛物线C:y22px(p0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|FD|.当点A的横坐标为3时,ADF为正三角形(1)求C的方程(2)若直线l1l,且l1和C有且只有一个公共点E.证明直线AE过定点,并求出定点坐标ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由21解:(1)由题意知F.设D(t,0)(t0),则FD的中点为.因为|FA|FD|,由抛物线的定义知3,解得t3p或t3(舍去)由3,解得p2,所以抛物线C的方程为y24x.(2)证明:由(1)知F(1,0)设A(x0,y0)(x0y00),D(xD,0)(xD0)因为|FA|FD|,则|xD1|x01,由xD0得xDx02,故D(x02,0)故直线AB的斜率kAB.因为直线l1和直线AB平行,设直线l1的方程为yxb,代入抛物线方程得y2y0,由题意0,得b.设E(xE,yE),则yE,xE.当y4时,kAE,可得直线AE的方程为yy0(xx0),由y4x0,整理可得y(x1),直线AE恒过点F(1,0)当y4时,直线AE的方程为x1,过点F(1,0)所以直线AE过定点F(1,0)由知,直线AE过焦点F(1,0),所以|AE|AF|FE|(x01)x02.设直线AE的方程为xmy1,因为点A(x0,y0)在直线AE上,故m.设B(x1,y1)直线AB的方程为yy0(xx0),由y00,得xy2x0.代入抛物线方程得y2y84x00,所以y0y1,可求得y1y0,x1x04.所以点B到直线AE的距离为d4,则ABE的面积S4x0216,当且仅当x0,即x01时,等号成立所以ABE的面积的最小值为16.14.如图,在平面直角坐标系中,椭圆的左、右焦点分别为,已知和都在椭圆上,其中为椭圆的离心率(1)求椭圆的方程;(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P(i)若,求直线的斜率;(ii)求证:是定值【答案】解:(1)由题设知,由点在椭圆上,得,。由点在椭圆上,得椭圆的方程为。(2)由(1)得,又,设、的方程分别为,。同理,。(i)由得,。解得=2。注意到,。直线的斜率为。(ii)证明:,即。(lby lfx)由点在椭圆上知,。同理。由得,。是定值。五、有关探究性问题15.在平面直角坐标系中,已知椭圆的离心率,且椭圆上的点到的距离的最大值为;(1)求椭圆的方程;(2)在椭圆上,是否存在点使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及相对应的的面积;若不存在,请说明理由。(lby lfx)【解析】(1)设 由,所以设是椭圆上任意一点,则,所以当时,当时,有最大值,可得,所以当时, 不合题意故椭圆的方程为:(2)中,当且仅当时,有最大值,时,点到直线的距离为又,此时点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论