




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三三诊模拟考试理科数学注意事项:1答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。第I卷 选择题(60分)一、选择题:本题共12小题,每小题5分,共60分。在每小题给的四个选项中,只有一项是符合题目要求的。1已知集合,则 ABCD2,若,则 ABCD3若,则 ABCD4函数的图象大致为 ABCD5已知等差数列的前项和为则数列的前10项和为ABCD6将函数的图象向左平移个单位长度,得到的函数为偶函数,则的值为 ABCD7从装有若干个大小相同的红球、白球和黄球的袋中随机摸出1个球,摸到红球、白球和黄球的概率分别为,从袋中随机摸出一个球,记下颜色后放回,连续摸3次,则记下的颜色中有红有白,但没有黄的概率为 ABCD8已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为 ABCD9设的内角,所对的边分别为,且,则面积的最大值为 A8B9C16D2110如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为 A B C D12蟺11已知抛物线的焦点为,准线与轴的交点为,点为抛物线上任意一点的平分线与轴交于,则的最大值为 ABCD12若函数在上单调递增,则实数的取值范围为 ABCD第II卷 非选择题(90分)2、 填空题:本题共4小题,每小题5分,共20分。13 14设是两个向量,则“”是“”的_条件.15圆的切线与椭圆交于两点分别以为切点的的切线交于点,则点的轨迹方程为_16已知函数,若存在唯一的零点,且,则的取值范围是_三解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)已知正项等比数列的前项和为, , ,数列满足,且(I)求数列的通项公式; (II)求数列的前项和18(12分)如图,在四棱锥中,底面是矩形,侧棱底面,点是的中点.(I)求证:平面;(II)若直线与平面所成角为,求二面角的大小.19 (12分)在某市高中某学科竞赛中,某一个区名考生的参赛成绩统计如图所示.(I)求这名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);(II)由直方图可认为考生竞赛成绩服正态分布,其中,分别取考生的平均成绩和考生成绩的方差,那么该区名考生成绩超过分(含分)的人数估计有多少人?(III)如果用该区参赛考生成绩的情况来估计全市的参赛考生的成绩情况,现从全市参赛考生中随机抽取名考生,记成绩不超过分的考生人数为,求.(精确到)附:,;,则,;.20(12分)中心在原点的椭圆E的一个焦点与抛物线的焦点关于直线对称,且椭圆E与坐标轴的一个交点坐标为.(I)求椭圆E的标准方程;(II)过点的直线l(直线的斜率k存在且不为0)交E于A,B两点,交x轴于点P点A关于x轴的对称点为D,直线BD交x轴于点Q.试探究是否为定值?请说明理由.21(12分)已知函数(I)当时,求的单调区间;(II)若有两个极值点,且,求取值范围(其中e为自然对数的底数)(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22选修4-4:坐标系与参数方程(10分)已知直线:(为参数),曲线:(为参数)(I)设与相交于两点,求;(II)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点P是曲线上的一个动点,求它到直线的距离的最大值23选修4-5:不等式选讲(10分)已知:,且(I)若求x的取值范围;(II)恒成立,求m的取值范围.理科数学参考答案1C2B3B4D5B6D7C8C9B10C11A 12D13 14充分必要 15 .1617()根据题意,设的公比为,所以解得又,所以()因为,所以18(1)连接交于,连接,由题意可知,又在平面外,平面,所以平面.以为坐标原点,所在直线分别为轴,轴,轴,建立空间直角坐标系,设,则,设平面的法向量,由,得,取,又由直线与平面所成的角为,得,解得,同理可得平面的法向量,由向量的夹角公式,可得,又因为二面角为锐二面角,所以二面角的大小为.19(1)由题意知:中间值概率 ,名考生的竞赛平均成绩为分.(2)依题意服从正态分布,其中,服从正态分布,而,.竞赛成绩超过分的人数估计为人人.(3)全市竞赛考生成绩不超过分的概率.而, .20(1)因为椭圆E的一个焦点与抛物线的焦点关于直线对称,所以椭圆E的右焦点为,所以.又椭圆E与坐标轴的一个交点坐标为,所以,又,所以椭圆E的标准方程为.(2)设直线l的方程为,则点,设则点,联立直线l与椭圆E的方程有,得,所以有,即且,即直线BD的方程为令,得点Q的横坐标为,代入得:,所以,所以为定值4.21.(1)的定义域为,的单调递增区间为和,单调递减区间为. (2,有两个极值点令,则的零点为,且., 或,.根据根的分布,则且g() 0 即 , .a的取值范围是22(1)的普通方程为,的普
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 动脉瘤术后的护理
- 公交员工教育培训
- 中学音乐教育体系构建与实践路径
- 装修电销话术培训
- 中职教育发展探索与实践
- 特殊口腔护理
- 2025年海洋生态保护与修复政策对海洋生态系统服务功能可持续性提升策略报告
- 休闲农业与乡村旅游融合发展规划报告:乡村旅游与旅游产业融合的商业模式创新001
- 绘画火龙果课件
- 小学数学教师入职面试培训
- 新产品评审管理办法
- (参考)菲达公司国内电除尘器业绩表
- 游泳池水质检测记录表
- 大学生职业生涯规划与就业指导教案第5讲:兴趣探索
- 门店电表记录表
- 七年级劳技 花卉种植 花卉用途 PPT学习教案
- 隧道换拱专项施工方案
- 国际金融托马斯普格尔复习资料整理
- 基于单片机的报警器与旋转灯设计(共21页)
- 中国农业银行房地产押品价值评估操作模板
- JJG596-2012《电子式交流电能表检定规程》
评论
0/150
提交评论