




已阅读5页,还剩73页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.2.3正方形,2002年世界数学大会会标,图片欣赏,剪一剪,1、给你一张正方形的彩色纸,你能一刀剪出如图的正方形孔吗?,.,正方形,矩形,剪一剪,2、给你一张矩形纸能把它折成一个正方形吗?,.,情景一,新知探究,.,情景一,新知探究,.,情景一,新知探究,.,情景一,新知探究,.,情景一,新知探究,.,情景一,新知探究,.,情景一,新知探究,.,创设情景,问题:,从这个图形中你想到了什么?,.,A,B,C,D,情景二,新知探究,.,A,B,C,D,情景二,新知探究,.,A,B,C,D,情景二,新知探究,.,A,B,情景二,新知探究,.,A,B,情景二,新知探究,.,A,B,情景二,新知探究,.,A,B,情景二,新知探究,.,A,B,C,D,情景二,新知探究,.,A,B,C,D,A,B,.,邻边相等的矩形,想一想:正方形是怎样的矩形?,矩形,正方形,新知探究,.,菱形,正方形,一个角是直角的菱形,想一想:正方形是怎样的菱形?,新知探究,.,有一个角是直角,有一组邻边相等,回忆,如何在平行四边形的基础上来定义正方形,给正方形下个定义,定义:一组邻边相等,且有一个角是直角的平行四边形叫做正方形,菱形,矩形,平行四边形,平行四边形,矩形,菱形,正方形的关系,正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形。,.,正方形的性质=,.,回顾平行四边形,矩形,菱形的性质,完成表格前三列,对边平行且相等,四条边相等,对边平行且四条边相等,对角相等,四个角都是直角,四个角都是直角,对角线互相平分,对角线相等,对角线互相垂直,每条对角线平分一组对角,对角线相等且互相垂直平分,每条对角线平分一组对角,中心对称图形,既是中心对称图形又是轴对称图形,既是中心对称图形又是轴对称图形,既是中心对称图形又是轴对称图形,图形,性质,分类,正方形,类比归纳,.,角:四个角都是直角,图形的对称性:既是轴对称图形,又是中心对称图形.,正方形的性质,.,你觉得什么样的四边形是正方形呢?(判断一个四边形是正方形有哪些方法?),正方形的判定方法:,(可从平行四边形、矩形、菱形为基础),定义法,.,四条边相等,四个角都是直角,对角线互相垂直、平分且相等,以四边形为基础:,既是菱形又是矩形的四边形是正方形。,.,请发表你的见解,谈谈你的收获!,.,小结,.,5种识别方法,三个角是直角,四条边相等,一个角是直角,或对角线相等,一组邻边相等,或对角线垂直,一组邻边相等,或对角线垂直,一个角是直角,或对角线相等,一个角是直角且一组邻边相等,平行四边形、矩形、菱形、正方形的判定小结,.,挑战自我,(1)正方形的一条对角线把正方形分成两个全等的等腰直角三角形()(2)对角线互相垂直且相等的四边形是正方形()(3)如果一个菱形的对角线相等,那么它一定是正方形()(4)如果一个矩形的对角线互相垂直,那么它一定是正方形()(5)四条边相等,且有一个角是直角的四边形是正方形(),快速反应,判断题:,.,(6)正方形一定是矩形()(7)正方形一定是菱形()(8)菱形一定是正方形()(9)矩形一定是正方形()(10)正方形、矩形、菱形都是平行四边形(),(12)正方形是轴对称图形,一共有2条对称轴(),(13)四个角都相等的四边形是正方形()(14)四条边都相等的四边形是正方形(),.,正方形具有而矩形不一定具有的性质是()A、四个角相等.B、对角线互相垂直平分.C、对角互补.D、对角线相等.,2.正方形具有而菱形不一定具有的性质()A、四条边相等.B、对角线互相垂直平分.C、对角线平分一组对角.D、对角线相等.,B,D,选择题:,.,3、下列命题正确的是()A、四个角都相等的四边形是正方形B、四条边都相等的四边形是正方形C、对角线相等的平行四边形是正方形D、对角线互相垂直的矩形是正方形,D,.,4四个内角都相等的四边形一定是()A、正方形B、菱形C、矩形D平行四边形,5在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是:()AAOBOCODO,ACBDBADBCACCAOCOBODOABBCDACBD,C,A,.,6四个内角都相等,四条边也都相等的四边形一定是:()A正方形B菱形C矩形D平行四边形,A,1、如图:正方形ABCD的周长为15cm,则矩形EFCG的周长为cm。,7.5,试一试,.,4.已知:正方形ABCD对角线AC、BD相交于点O,且AB2cm,则AC=,正方形的面积S=_.,练一练,2,2,4,6,36,5.已知:在正方形ABCD中,对角线AC、BD相交于点O,且AC6cm,面积S=_.则边长AB_,.,5、已知四边形ABCD是平行四边形,对角线AC、BD相交于点O。,若AB=BC,则四边形ABCD是()若AC=BD,则四边形ABCD是()若BCD=900,则四边形ABCD是()若OA=OB,则四边形ABCD是()若AB=BC,且AC=BD,则四边形ABCD是(),菱形,矩形,矩形,矩形,正方形,.,如图,在正方形ABCD中,点E在对角线AC上,那么,BE和DE相等吗?为什么?,解:BE=DE.因为对角线AC所在的直线是正方形ABCD的对称轴,而点E在对称轴上,点B为点D关于AC的对称点,所以BE=DE,已知:如图正方形ABCD对角线AC、BD相交于点O。,求证:ABOBCOCDOADO,例1、求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。,.,3如图(3),正方形ABCD中,AC、BD相交于O,,分析:要证明BMCN,大家观察图形可以考虑证哪两个三角形全等?,MNAB且MN分别交OA、OB于M、N,,求证:BMCN。,你能完成证明吗?,ABBC,1245条件够吗?,还需要的条件是AMBN,ABMBCN,你所要证明的两个三角形已经满足了哪些条件?,由正方形可以得到的条件有:,例2、如图,正方形ABCD中,AC、BD相交于O,MNAB且MN分别交OA、OB于M、N,求证:BMCN。,证明:,OAOMOBON,OMON,OMN13ONM45,又MNAB,12345,OAOBAB=BC,四边形ABCD是正方形,即:AM=BN,ABMBCN,BM=CN,例3、直角三角形ABC中,CD平分ACB交AB于D,DEAC,DFAB。求证:四边形CEDF是正方形。,四边形ABCD是正方形(),DE=DF(),DEAC,DFBC,CD平分ACB,四边形ABCD为矩形(),而ACB=90,DEC=90,DFC=90,证明:DEAC,DFAB,有三个角是直角的四边形是矩形,角平分线的定理,有一组邻边相等的矩形是正方形,.,4已知:如图(4)在正方形ABCD中,F为CD延长线上一点,CEAF于E,交AD于M,求证:MFD45,分析:欲证MFD45,由于MDF是直角三角形,只须证MDF是等腰三角形,即只要证_=_,要证MDFD,大家只须证得哪两个三角形全等?,试一试看能不能完成证明?,CMDADF,例4、已知:如图(4)在正方形ABCD中,F为CD延长线上一点,CEAF于E,交AD于M,求证:MFD45,证明:,DM=DF,RtCDMRtADF(AAS),又CDAD,ADFMDC=Rt,12,CMDAME,ADCAEM90,CEAF四边形ABCD是正方形,MFD45,1、如图,在AB上取一点C,以AC、BC为正方形的一边在同一侧作正方形AEDC和BCFG连结AF、BD延长BD交AF于H。求证:(1)ACFDCB(2)BHAF,练一练,2、如图(6),ABC的外面作正方形ABDE和ACFG,连结BG、CE,交点为N。求证:CEAABG,证明:四边形ABDE和四边形ACFG是正方形。AEABAGAC1290又EAC1BAC90BACBAG2BAC90BACEACBAGAECABG(SAS)CEAABG,3、在正方形中,点,分别在,上,且.四边形是正方形吗?为什么?,4、如图,点E、F在正方形ABCD的边BC、CD上,BE=CF,探索图中AE与BF的关系。,5、如图,在正方形ABCD中,E在BC的延长线上,且CE=AC,AE交CD于F,则求AFC的度数。,6、在ABC中,AB=AC,D是BC的中点,DEAB,DFAC,垂足分别是E,F.1)试说明:DE=DF2)只添加一个条件,使四边形EDFA是正方形.请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明),1、在一块正方形的花坛上,欲修建两条直的小路,使得两条直的小路将花坛平均分成面积相等的四部分(不考虑道路的宽度),你有几种方法?(至少说出三种),课外拓展:,.,如何设计花坛?在一块正方形的花坛上,欲修建两条直的小路,使得两条直的小路将花坛平均分成面积相等的四部分(不考虑道路的宽度),你有几种方法?(至少说出三种),请你当设计师,.,1已知:正方形ABCD对角线AC、BD相交于点O,且AB2cm,如图(2)。,求:AC的长及正方形的面积S。,E,F,G,矩形EFCG的周长。,.,.,6、已知:如图矩形ABCD,对角线AC、BD相交于点O,AE平分BAD交BC于点E,连接OE,若EAO=150,求BOE的度数。,.,7、在正方形ABCD中,AC=10,P是AB上任意一点,PEAC于点E,PFBD于点F,求PE+PF的值。,.,8、如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一个动点,求DN+MN的最小值。,A,B,C,D,M,N,.,8、如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一个动点,求DN+MN的最小值。,A,B,C,D,M,N,.,9、已知,如图在ABC中,AB=AC,ADBC,垂足为点D,AN是ABC外角CAM的平分线,CEAN垂足为点E,,求证:四边形ADCE是矩形。,当ABC满足什么条件时,四边形ADCE是正方形,说明理由。,.,10、如图B、C、E是同一直线上的三个点,四边形ABCD与CEFG是正方形,连接BG、DE,(1)观察、猜想BG与DE之间的大小关系,并说明理由。,(2)正方形CEFG在绕点C旋转过程中,BG与DE之间的关系是否仍然成立。,.,11、如图,M为正方形ABCD边AB的中点,E是AB延长线上一点,MNDM,且交CBE的平分线于点N。,(1)求证:MD=MN,(2)若将上述条件中的“M是AB的中点”改为“M为AB上任意一点”,其它条件不变,问结论MD=MN是否仍然成立。,F,P,.,思考题:如图正方形ABCD的对角线相交于点O,O又是另一个正方形OEFG的一个顶点,若正方形OEFG绕点O旋转,在旋转的过程中.,探究二:若正方形OEFG与正方形ABCD两边分别相交于MN,试判断线段AM于BN之间的关系.,探究一:两个正方形重叠部分的面积是否会发生变化?并说明理由。,.,探究四:如图,有两个大小不等的两个正方形,其中小正方形的面积是大正方形面积的一半,若阴影部分的面积为8,则小正方形的边长为多少?,探究三:若正方形OEFG继续旋转时,AM与BN之间的关系是否还成立?,.,构建与证明,O,B,A,如图,分别延长等腰直角三角形OAB的两条直角边AO和BO,使AO=OC,BO=OD求证:四边形ABCD是正方形。,八年级数学,第十九章四边形,.,数一数图中正方形的个数,你发现了什么?,多,多,多,()个()个()个()个,第n个图中正方形有个,3n-1,长见识,八年级数学,第十九章四边形,.,四边形ABCD是正方形,两条对角线相交于点O,(1)求AOB,OAB的度数,8,解:四边形ABCD是正方形ACBDAOB=900BAC=DACOAB=450,(2)若AC=4,则正方形边长;正方形的面积是,4,(3)正方形的面积64cm,则对角线交点到正方形一边的距离,.,AC为正方形ABCD的对角线,E为AC上一点,且AB=AE,EFAC交BC于F.请说明:EC=EF=FB,解:四边形ABCD是正方形B=900,ACB=450AEF=90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智慧社区项目建议书:构建和谐宜居社区环境
- 2025年租车行业车辆调配合同官方样本
- 2025年物联网技术合作发展合同正式版
- 2025压缩机购销合同
- 2025年产品采购委托代理合同样本
- 2025食品配送合同协议书
- 2025南京市存量房买卖合同书
- 2025合同模板家具采购售后服务承诺及措施范本
- 2025年度住宅区物业安保服务承包合同
- 八年级下册生物教学计划方案
- 《信息检索与处理(修订版)》课件下 第2单元第二课 分析信息-第3单元 综合探究实践活动
- 楼盘融资商业计划书
- 物业费催费技巧(干货版)
- 物业保盘行动策划方案
- 2023-2024学年江苏省南通市如皋市重点中学八年级(上)第二次月考数学试卷(含解析)
- 脑梗塞个案护理查房
- 2013年天津公务员考试职位表
- 矿山安全供电讲义
- 小学语文阅读理解答题万能公式全套
- 公司管理程序文件模板
- 化学(医药卫生类)中职PPT完整全套教学课件
评论
0/150
提交评论