




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Matlab常微分方程求解,科学技术和工程中许多问题是用微分方程的形式建立数学模型,因此微分方程的求解有很实际的意义。一、常微分方程(组)的符号解二、常微分方程(组)数值解,一、常微分方程(组)的符号解,函数dsolve格式:r=dsolve(eq1,eq2,cond1,cond2,v),说明(1)对给定的常微分方程(组)eq1,eq2,中指定的符号自变量v,与给定的边界条件和初始条件cond1,cond2,.求符号解(即解析解)r;,(2)若没有指定变量v,则缺省变量为t;,(3)在微分方程(组)的表达式eq中,大写字母D表示对自变量(设为x)的微分算子:D=d/dx,D2=d2/dx2,。微分算子D后面的字母则表示为因变量,即待求解的未知函数。初始和边界条件由字符串表示:y(a)=b,Dy(c)=d,D2y(e)=f,等等,分别表示,(4)若边界条件少于方程(组)的阶数,则返回的结果r中会出现任意常数C1,C2,;,(5)dsolve命令最多可以接受12个输入参量(包括方程组与定解条件个数,当然我们可以做到输入的方程个数多于12个,只要将多个方程置于一字符串内即可)。,(6)若没有给定输出参量,则在命令窗口显示解列表。若该命令找不到解析解,则返回一警告信息,同时返回一空的sym对象。这时,用户可以用命令ode23或ode45求解方程组的数值解。,例1,dsolve(D2y=-a2*y,y(0)=1,Dy(pi/a)=0,x),ans=cos(a*x),dsolve(D2y=-a2*y,y(0)=1,Dy(pi/a)=0),例2,u,v=dsolve(Du=v,Dv=u),u=C1*exp(-t)+C2*exp(t)V=-C1*exp(-t)+C2*exp(t),二、常微分方程(组)数值解,Matlab专门用于求解常微分方程的函数,主要采用Runge-Kutta方法:ode23,ode45,ode113,ode15s,ode23s,ode23t,ode23tb,二、常微分方程(组)数值解,T,Y=solver(odefun,tspan,y0),T,Y=solver(odefun,tspan,y0,options),T,Y=solver(odefun,tspan,y0,options,p1,p2),参数说明:,(1)solver为命令Ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb之一。(2)odefun为常微分方程y=f(x,y),或为包含一混合矩阵的方程(x,y)*y=f(x,y).(3)tspan积分区间(即求解区间)的向量tspan=t0,tf。要获得问题在其他指定时间点t0,t1,t2,上的解,则令tspan=t0,t1,t2,tf(要求是单调的)。,参数说明:,(4)y0包含初始条件的向量。(5)options用命令odeset设置的可选积分参数.(6)p1,p2,传递给函数odefun的可选参数。,在区间tspan=t0,tf上,从t0到tf,用初始条件y0求解显式微分方程y=f(t,y)。对于标量t与列向量y,函数f=odefun(t,y)必须返回一f(t,y)的列向量f。解矩阵Y中的每一行对应于返回的时间列向量T中的一个时间点。要获得问题在其他指定时间点t0,t1,t2,上的解,则令tspan=t0,t1,t2,tf(要求是单调的)。,T,Y=solver(odefun,tspan,y0),用参数options(用命令odeset生成)设置属性(代替了缺省的积分参数),再进行操作。常用的属性包括相对误差值RelTol(缺省值为1e-3)与绝对误差向量AbsTol(缺省值为每一元素为1e-6)。,T,Y=solver(odefun,tspan,y0,options),将参数p1,p2,p3,.等传递给函数odefun,再进行计算。若没有参数设置,则令options=。,T,Y=solver(odefun,tspan,y0,options,p1,p2),求解具体ODE的基本过程:,(1)根据问题所属学科中的规律、定律、公式,用微分方程与初始条件进行描述。F(y,y,y,y(n),t)=0y(0)=y0,y(0)=y1,y(n-1)(0)=yn-1而y=y;y(1);y(2);,y(m-1),n与m可以不等,求解具体ODE的基本过程:,(2)运用数学中的变量替换:yn=y(n-1),yn-1=y(n-2),y2=y,y1=y,把高阶(大于2阶)的方程(组)写成一阶微分方程组:,(3)根据(1)与(2)的结果,编写能计算导数的M-函数文件odefile。(4)将文件odefile与初始条件传递给求解器Solver中的一个,运行后就可得到ODE的、在指定时间区间上的解列向量y(其中包含y及不同阶的导数)。,不同求解器Solver的特点,不同求解器Solver的特点,参数设置,参数设置,参数设置,参数设置,参数设置,参数设置,例3,创建函数function2,保存在function2.m中functionf=function2(t,x)f=-x.2;,在命令窗口中执行t,x=ode45(function2,0,1,1);plot(t,x,-,t,x,o);xlabel(timet0=0,tt=1);ylabel(xvaluesx(0)=1);,例4,创建函数function3,保存在function3.m中:functionf=function3(t,x)f=x(1)-0.1*x(1)*x(2)+0.01*t;.-x(2)+0.02*x(1)*x(2)+0.04*t;,运行命令文件runf3.mt,x=ode45(function3,0,20,30;20);plot(t,x);xlabel(timet0=0,tt=20);ylabel(xvaluesx1(0)=30,x2(0)=20);,例5,创建函数function4,存在function4.m中functionf=function4(t,x)glo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行刑法考试试题及答案
- 寿险高管考试试题及答案
- 工业气体试题及答案
- 2025年防城港市消防员考试笔试试题(含答案)
- 2024食品安全员能力考核试题含答案
- 2025年低压电工操作证模拟考试复审题库及答案
- 识测试题及答案
- 电工(初级工)测试题+答案
- 2025全国企业员工全面质量管理知识竞赛题库(含答案)
- 2025河北省社区《网格员》模拟试题(含答案)
- 办公自动化使用教材课件
- 2025年专业士官考试题库
- 院前急救技能大赛
- 2024年武汉广播电视台专项招聘真题
- 高血压尿毒症护理查房
- 2025届山东省青岛五十八中高一物理第二学期期末考试试题含解析
- 医院培训课件:《基于医院感染防控的安全注射》
- 2025年档案管理与信息资源利用考试试题及答案
- 工业空调培训课件模板
- 防汛安全教育试卷(含答案)
- 2025届上海市高考英语考纲词汇表
评论
0/150
提交评论