




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
偏微分方程期末考试复习一、波动方程(双曲型方程)(一)初值问题(柯西问题)1、一维情形(1)解法(传播波法):由叠加原理,原初值问题的解可表示为下述初值问题的解之和,(I) ()其中,问题(I)的解由达朗贝尔公式给出:由齐次化原理,问题()的解为:其中,是下述初值问题的解:,利用达朗贝尔公式得从而问题()的解为:综上所述,原初值问题的解为:(2)依赖区间、决定区域、影响区域、特征线:依赖区间:点(x , t)的依赖区间为:x-at , x+at;决定区域:区间的决定区域为:(x,t)|影响区域:区间的影响区域为:(x,t)|特征线:(3)解的验证:见课本P10, P142、三维情形(1)解法(球面平均法):由叠加原理,原初值问题的解可表示为下述初值问题的解之和,(I) ()其中,问题(I)的解由泊松公式给出:由齐次化原理,问题()的解为:其中,是下述初值问题的解:,利用泊松公式得从而问题()的解为:综上所述,原初值问题的解为:(2)依赖区间、决定区域、影响区域、特征锥、惠更斯原理(无后效现象):依赖区域(球面):点的依赖区域为;决定区域(锥体):球面决定区域为: ;影响区域(锥面):点的影响区域为: 特征锥:惠更斯原理(无后效现象)见课本P35(3)解的验证:见课本P29, P323、二维情形(1)解法(降维法):由叠加原理,原初值问题的解可表示为下述初值问题的解之和,(I) ()其中,问题(I)的解由二维泊松公式给出:由齐次化原理,问题()的解为:其中,是下述初值问题的解:,利用泊松公式得从而问题()的解为:综上所述,原初值问题的解为:(2)依赖区间、决定区域、影响区域、特征锥、后效现象:依赖区域(圆饼):点的依赖区域为;决定区域(锥体):圆饼决定区域为: ;影响区域(锥体):点的影响区域为: 特征锥:后效现象见课本P35、36(3)解的验证:课本没有,有兴趣的童鞋自己动手丰衣足食。(二)初边值问题(1)解法(分离变量法):由叠加原理,原初值问题的解可表示为下述初值问题的解之和,(I) ()用分离变量法(过程请脑内补完)得到(I)的解为:其中用齐次化原理得到()的解:从而原初边值问题的解为:注:非齐次边界条件的情形见课本P21、22(2)解的验证、相容性条件(见课本P19)相容性条件:函数,并且二、热传导方程(抛物型方程)(一)初边值问题(注:由于老师讲课以及课后习题中都没有非齐次方程的初边值问题,估计不会考;但是边界条件有可能给第一、第二、第三类边界条件,这里的解法仅一第一类齐次边界条件为例)(1)解法(分离变量法):用分离变量法(过程请脑内补完)得到原方程的解为:其中注:非齐次边界条件的情形见课本P21、22(2)解的验证、相容性条件(见课本P51、52)(二)柯西问题(1)傅里叶变换(必考的重点)一维情形:傅里叶变换:傅里叶逆变换:高维情形:设,傅里叶变换:傅里叶逆变换:傅里叶变换的性质:性质1 性质2 性质3 性质4 性质5 (2)解法:由叠加原理,原初值问题的解可表示为下述初值问题的解之和,(I) ()其中问题(I)的解由泊松公式给出:用齐次化原理得到问题()的解:从而原柯西问题的解为:(3)解的验证(见课本P58、59)(三)极值原理、定解问题解的唯一性与稳定性(见课本P6065)极值原理 热传导方程()的解u(x,t)在抛物边界上取得极大、极小值。三、调和方程(椭圆型方程)(一)拉普拉斯算子、梯度与散度1、几个常用的关系式:; ,为单位向量; 2、拉普拉斯算子在不同坐标系下的形式:直角坐标系:球面坐标系:柱面坐标系:极坐标系:(二)变分原理(见课本P71、72)(算是难点,但期末考估计不会涉及,此处从略)(三)格林公式及其应用1、格林公式:2、格林第一公式:3、格林第二公式:4、调和函数的基本积分公式:若,则若,则5、若在以曲面为边界的区域内调和,在上有连续一阶偏导数,则.由此得到诺依曼边界条件有解的必要条件是函数满足6、球面平均值公式(条件略): 7、球体平均值公式(条件略): 8、极值原理、第一边值问题的唯一性及稳定性(略)(四)格林函数1、格林函数法:调和函数的第一边值问题的解可以表示为:2、格林函数的性质: 性质1 格林函数除一点外处处调和,而当时,趋于无穷大的阶数与相同;性质 2 ;性质 3 性质 4 性质 5 3、静电原像法:(1)球的泊松公式:或(2)圆的泊松公式:或(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025临床执业医师经典例题(夺分金卷)附答案详解
- 发货快递合同(标准版)
- 保险公司保险合同(标准版)
- 2024公务员(国考)考前冲刺练习试题及完整答案详解(各地真题)
- 2025年智慧港口智能港口与城市协同发展报告
- 2025年康复医疗器械市场需求洞察与前沿产品创新策略报告
- 西藏自治区2025年初中学业水平考试历史试卷含答案
- 2025年传媒互联网行业市场前景及投资研究报告:AI应用新消费
- 巡察办工作流程课件
- DeepSeek技术赋能企业财务数字化转型的框架与策略
- 幕墙玻璃更换施工安全技术方案
- 2025年国内知名企业数据分析师岗位招聘面试题及答案
- 2025年地方病防治科地方病防控策略考核试卷答案及解析
- 型钢混凝土剪力墙剪力刚度精细评估与设计优化
- 《百分数与分数的互化》课件 2025-2026学年小学数学六年级上册 苏教版
- 2025中国人民抗日战争纪念馆招聘4人考试参考试题及答案解析
- 2025年山西省政府采购评审专家考试真题库(带答案)
- 2025年度太阳能光伏发电站基础地基旋挖钻孔灌注桩专业分包合同
- 北京暴雨洪涝灾害风险评估:基于多因素分析与案例研究
- 2025纪念中国人民抗日战争胜利80周年心得一
- 北师大版(2024)新教材三年级数学上册课件 3.1 捐书
评论
0/150
提交评论