已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数的基本公式与运算法则,基本初等函数的导数公式,(x)=x-1.,(ax)=axlna.,(ex)=ex.,(sinx)=cosx.,(cosx)=-sinx.,(tanx)=sec2x.,(cotx)=-csc2x.,(secx)=secxtanx.,(cscx)=-cscxcotx.,另外还有反三角函数的导数公式:,定理2.1设函数u(x)、v(x)在x处可导,,在x处也可导,,(u(x)v(x)=u(x)v(x);,(u(x)v(x)=u(x)v(x)+u(x)v(x);,导数的四则运算,且,则它们的和、差、积与商,推论1(cu(x)=cu(x)(c为常数).,推论2,乘法法则的推广:,补充例题:求下列函数的导数:,解根据推论1可得(3x4)=3(x4),,(5cosx)=5(cosx),,(cosx)=-sinx,,(ex)=ex,,(1)=0,,故,f(x)=(3x4-ex+5cosx-1),=(3x4)-(ex)+(5cosx)-(1),=12x3-ex-5sinx.,f(0)=(12x3-ex-5sinx)|x=0=-1,又(x4)=4x3,,例1设f(x)=3x4ex+5cosx-1,求f(x)及f(0).,例2设y=xlnx,,求y.,解根据乘法公式,有,y=(xlnx),=x(lnx)+(x)lnx,解根据除法公式,有,教材P32例2求下列函数的导数:,解:,高阶导数,如果可以对函数f(x)的导函数f(x)再求导,,所得到的一个新函数,,称为函数y=f(x)的二阶导数,,记作f(x)或y或,如对二阶导数再求导,则称三阶导数,,记作f(x)或,四阶或四阶以上导数记为y(4),y(5),y(n),或,,而把f(x)称为f(x)的一阶导数.,例3求下列函数的二阶导数,解:,二阶以上的导数可利用后面的数学软件来计算,推论设y=f(u),u=(v),v=(x)均可导,则复合函数y=f(x)也可导,,以上法则说明:复合函数对自变量的导数等于复合函数对中间变量的导数乘以中间变量对自变量的导数.,先将要求导的函数分解成基本初等函数,或常数与基本初等函数的和、差、积、商.,任何初等函数的导数都可以按常数和基本初等函数的求导公式和上述复合函数的求导法则求出.,复合函数求导的关键:正确分解初等函数的复合结构.,求导方法小结:,例5:求下列函数的导数,(1)(2)(3)(4),二元函数的偏导数的求法,求对自变量(或)的偏导数时,只须将另一自变量(或)看作常数,直接利用一元函数求导公式和四则运算法则进行计算.,例1设函数,求,解:,例2设函数,解:,类似可得,二元函数的二阶偏导数,函数z=f(x,y)的两个偏导数,一般说来仍然是x,y的函数,,如果这两个函数关于x,y的偏导数也存在,,则称它们的偏导数是f(x,y)的二阶偏导数.,依照对变量的不同求导次序,,二阶偏导数有四个:(用符号表示如下),其中及称为二阶混合偏导数.,类似的,可以定义三阶、四阶、n阶偏导数,,二阶及二阶以上的偏导数称为高阶偏导数,,称为函数f(x,y)的一阶偏导数.,注:当两个二阶导数连续时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国计量泵市场调研与未来发展趋势报告
- 2026年中国煤矿水泵自动控制系统行业市场前景预测及投资价值评估分析报告
- 2026年中国硫选择性检测器行业市场前景预测及投资价值评估分析报告
- 2025山东大学齐鲁医学院科研与国际交流办公室非事业编制人员招聘1人笔试考试备考题库及答案解析
- 2025云南玉溪红塔实业有限责任公司员工招聘29人(第二批)考试笔试参考题库附答案解析
- 2025湖南长沙县实验梨江中学教师招聘笔试考试参考试题及答案解析
- 老年人诈骗风险防范指南
- 大专生考研规划分析
- 2025奇瑞徽银金融车贷合同签订指南
- 桶装水采购及配套服务协议范本
- 2025年教师考试时事政治考点热点题库含完整答案
- 球馆合伙协议合同模板
- 2024年陕西咸阳杨陵区招聘社区专职工作人员考试真题
- 2025中国光伏组件回收技术发展现状与循环经济战略报告
- 家庭宽带服务质量保障流程规范(2024版)
- 2025年法院书记员招聘考试笔试试题附答案
- 江西洪城水业环保有限公司面向社会公开招聘工勤岗工作人员【28人】考试笔试备考试题及答案解析
- 学堂在线 战场侦察监视技术与装备 章节测试答案
- 铁路行车事故应急预案范本
- 2022年中小学教师职称评定答辩题
- FZ/T 01057.1-2007纺织纤维鉴别试验方法 第1部分:通用说明
评论
0/150
提交评论