



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
太原市2019-2020年度数学八年级下第四章 因式分解 综合测试题A卷姓名:_ 班级:_ 成绩:_一、单选题1 . 若mn6,mn7,则mn2m2n的值是( )A13B13C42D422 . 下列计算:;,其中正确的有( )A1个B2个C3个D4个3 . 已知,则、的值分别是( )A;B;C;D4 . 下列因式分解正确的是( )ABCD5 . 下列各式可以用完全平方公式分解因式的是( )Ax2y2Ba2-2ab+4b2C4m2-m+D-9+6y-y26 . 分解因式:( )ABCD7 . 下列从左边到右边的变形,是因式分解的是ABCD8 . 不论x、y取何数,代数式x2 + y2 6x + 8y + 26的值均为( )A正数B零C负数D非负数9 . 不论x,y为何有理数,x2+y210x+8y+45的值均为( )A正数B零C负数D非负数10 . 已知,则的值是( )A11B15C56D60二、填空题11 . 分解因式x2+3x+2的过程,可以用十字相乘的形式形象地表示:先分解二次项系数,分别写在十字交叉线的左上角和左下角;再分解常数项,分别写在十字交叉线的右上角和右下角;然后交叉相乘,求代数和,使其等于一次项系数(如右图)这样,我们可以得到x2+3x+2(x+1)(x+2)请利用这种方法,分解因式2x23x2_12 . 把多项式因式分解的结果是_13 . 如果x+y=5,xy=2,则x2y+xy2=_14 . 在实数范围内分解因式a212 15 . 如图,用1张1号卡片、2张2号卡片和1张3号卡片拼成一个正方形,则正方形的边长为_16 . 分解因式:17 . 已知,则=_。18 . 在日常生活中如取款、上网等都需要密码有一种用“因式分解”法产生的密码,方便记忆原理是:如对于多项式x4y4,因式分解的结果是(xy)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(xy)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码对于多项式x3xy2,取x=27,y=3时,用上述方法产生的密码是:_(写出一个即可)19 . 分解因式:=_三、解答题20 . 阅读下面的解答过程,求y24y8的最小值解:y24y8y24y44(y+2)2+44,(y2)20即(y2)2的最小值为0,y24y8的最小值为4.仿照上面的解答过程,求m2m4的最小值和4x22x的最大值.21 . 阅读理解,观察下列因式分解的过程:(1).(2).第(1)题分组后能直接提取公因式,第(2)题分组后能直接运用公式.仿照上述分解因式的方法,把下列各式分解因式:(1);(2).22 . 仔细阅读下面例题:例题:已知二次三项式x2+5x+m有一个因式是x+2,求另一个因式以及m的值解:设另一个因式x+n,得x2+5x+m(x+2)(x+n),则x2+5x+mx2+(n+2)x+2n,n+25,m2n,解得n3,m6,另一个因式为x+3,m的值为6依照以上方法解答下面问题:(1)若二次三项式x27x+12可分解为(x3)(x+a),则a (2)若二次三项式2x2+bx6可分解为(2x+3)(x2),则b (3)已知二次三项式2x2+9xk有一个因式是2x1,求另一个因式以及k的值23 . 计算:a(a+2)(a3)24 . 已知a,b,c是三角形的三边,且满足a2+b2+c2abbcca=0.试判断三角形的形状.25 . (1)已知的值;(2)已知的值.26 . 分解因式(1)x36x29x(2)a2(xy)4(yx)利用乘法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省宿州市砀山县2024-2025学年高一上学期期中考试历史题库及答案
- 心有灵犀游戏题目及答案
- 心理学必背题目及答案
- 小学语文各种句型改写题目及答案
- 桃花源记人物性格分析与文学创作技巧探讨:高中语文研究性教案
- 工艺品采购及加工合同
- 农业生态合作社合同书
- 初中物理力学模型制作:力学原理与实践操作教案
- 技术解决方案标准化流程
- 时间像小马车说课课件
- 校园方责任保险服务项目方案投标文件(技术方案)
- 2025年反洗钱知识竞赛培训试题及答案
- 军工计价管理办法
- 云南省昆明市五华区2023年小升初语文真题试卷(学生版)
- 2025租房合同附带室内物品清单
- 2025年度枣庄市专业技术人员继续教育公需课考试题(含答案)
- “满鲜一体化”视域下“满鲜”商业会议所联合会研究(1918-1929)
- 高中生物开学第一课课件 高一生物(人教版)必修1
- 送配电线路工(送电)-初级工模拟题含答案(附解析)
- 供应商物流管理办法规定
- 2025新食品安全法及修订解读企业应对新规培训课件
评论
0/150
提交评论