




已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,Chapter1TrajectoryPreprocessing,JohnKrummMicrosoftResearchRedmond,WAUSA,Wang-ChienLeePennsylvaniaStateUniversityUniversityPark,PAUSA,.,Trafficinfo,Navigation,Localweather,Emergencyservice,Logistics,Location-BasedServices,GeographicalInformationSystem(GIS),Tracking,MobileCommerce,.,SystemModelforLBSs,Thelocationsoftrackedmovingobjectsarereportedtothelocationserverviawirelesscommunications.TheLBSapplicationssubmitqueriestotheservertoretrievemovingobjectdataforanalysisorotherapplicationneeds.,.,Trajectories,.,PositioningtechnologiesGlobalpositioningsystem(GPS)Network-based(e.g.,usingcellularorwifiaccesspoints)Dead-Reckoning(forestimation),.,MobileObjectDatabases,ResearchcommunitieshavemadetremendousresearchefforttosupportLBSs.E.g.,Mobileobjectdatabases(MODs)Inadditiontoconventionalsearchfunctionsofmovingobjects,manyLBSapplicationsneedtoanalyzeandminevariousmovingpatternsandphenomenonoftrackedobjects.TrajectoryManagement:trajectoriesofmovingobjects,i.e.,theirgeographical-temporaltraces,areoftentreatedasfirst-classcitizensinMODs.,.,TrajectoryPreprocessing,ProblemstosolvewithtrajectoriesLotsoftrajectorieslotsofdataNoisecomplicatesanalysisandinferenceEmploythedatareductionandfilteringtechniquesSpecializeddatacompressionfortrajectoriesPrincipledfilteringtechniques,.,Part1-Compression,.,PerformanceMetrics,Trajectorydatareductiontechniquesaimstoreducetrajectorysizew/ocompromisingmuchprecision.PerformanceMetricsProcessingtimeCompressionRateErrorMeasureThedistancebetweenalocationontheoriginaltrajectoryandthecorrespondingestimatedlocationontheapproximatedtrajectoryisusedtomeasuretheerrorintroducedbydatareduction.ExamplesarePerpendicularEuclideanDistanceorTimeSynchronizedEuclideanDistance.,.,IllustrationofErrorMeasures,PerpendicularEuclideanDistanceTimeSynchronizedEuclideanDistance,.,TrajectoryDataReduction,ClassificationofDataReductionTechniques.BatchedCompression:Collectfullsetoflocationpointsandthencompressthedatasetfortransmissiontothelocationserver.Applications:contentsharingsitessuchasEverytrailandBikely.TechniquesincludeDouglas-PeuckerAlgorithm,top-downtime-ratio(TD-TR),andBellmansalgorithm.On-lineDataReductionSelectiveon-lineupdatesofthelocationsbasedonspecifiedprecisionrequirements.Applications:trafficmonitoringandfleetmanagement.TechniquesincludeReservoirSampling,SlidingWindow,andOpenWindow.,.,BatchCompression-Douglas-Peucker(DP)Algorithm,PreservedirectionaltrendsintheapproximatedtrajectoryusingtheperpendicularEuclideandistanceastheerrormeasure.Replacetheoriginaltrajectorybyanapproximatelinesegment.Ifthereplacementdoesnotmeetthespecifiederrorrequirement,itrecursivelypartitionstheoriginalproblemintotwosubproblemsbyselectingthelocationpointcontributingthemosterrorsasthesplitpoint.Thisprocesscontinuesuntiltheerrorbetweentheapproximatedtrajectoryandtheoriginaltrajectoryisbelowthespecifiederrorthreshold.,.,IllustrationofDPAlgorithm,Splitatthepointwithmosterror.RepeatuntilalltheerrorsR),randomlydecides,withaprobabilityofR/k,whethertokeepthislocationpointornot.Ifthedecisionispositive,oneoftheRexistinglocationpointsinthereservoirisdiscardedrandomlytomakespaceforthenewlocationpoint.thereservoiralgorithmalwaysmaintainsauniformsampleoftheevolvingtrajectorywithoutevenknowingtheeventualtrajectorysize.,.,On-lineCompressionSlidingWindow,Fitthelocationpointsinagrowingslidingwindowwithavalidlinesegmentandcontinuetogrowtheslidingwindowuntiltheapproximationerrorexceedssomeerrorbound.FirstinitializethefirstlocationpointofatrajectoryastheanchorpointpaandthenstartstogrowtheslidingwindowWhenanewlocationpointpiisaddedtotheslidingwindow,thelinesegmentpapiisusedtofitallthelocationpointswithintheslidingwindow.Aslongasthedistanceerrorsagainstthelinesegmentpapiaresmallerthantheuser-specifiederrorthreshold,theslidingwindowcontinuestogrow.Otherwise,thelinesegmentpapi-1isincludedaspartoftheapproximatedtrajectoryandpiissetasthenewanchorpoint.Thealgorithmcontinuesuntilallthelocationpointsintheoriginaltrajectoryarevisited.,.,SlidingWindow-Illustration,Whiletheslidingwindowgrowsfromp0top0,p1,p2,p3,alltheerrorsbetweenfittinglinesegmentsandtheoriginaltrajectoryarenotgreaterthanthespecifiederrorthreshold.Whenp4isincluded,theerrorforp2exceedsthethreshold,sop0p3isincludedintheapproximatetrajectoryandp3issetastheanchortocontinue.,.,OpenWindow,Differentfromtheslidingwindow,chooselocationpointswiththehighesterrorintheslidingwindowastheclosingpointoftheapproximatinglinesegmentaswellasthenewanchorpoint.Whenp4isincluded,theerrorforp2exceedsthethreshold,sop0p2isincludedintheapproximatetrajectoryandp2issetastheanchortocontinue.,.,Part1Summary,TrajectoryDataCompressionBatchDouglas-Peucker(DP)Top-DownTimeRatio(TDTR)timeincludedBellmandynamicprogrammingOn-lineSlidingwindowOpenwindow(variationofslidingwindow),.,Part2-Filtering,GoalsSmoothnoise&outliersInferhigherlevelvalues(e.g.speed),TechniquesMeanandmedianKalmanfilterParticlefilter,.,RunningExample,Trackamovingpersonin(x,y)1075(x,y)measurements=1secondManuallyaddedoutliers,measurementvector,actuallocation,noise,zeromean,standarddeviation=4meters,Notation,.,MeanFilter,Alsocalled“movingaverage”and“boxcarfilter”Applytoxandymeasurementsseparately,zx,t,Filteredversionofthispointismeanofpointsinsolidbox,“Causal”filterbecauseitdoesntlookintofutureCauseslagwhenvalueschangesharplyHelpfixwithdecayingweights,e.g.Sensitivetooutliers,i.e.onereallybadpointcancausemeantotakeonanyvalueSimpleandeffective(Iwillnotvotetorejectyourpaperifyouusethistechnique),.,MeanFilter,10pointsineachmean,OutlierhasnoticeableimpactIfonlythereweresomeconvenientwaytofixthis,outlier,.,MedianFilter,zx,t,Filteredversionofthispointismeanmedianofpointsinsolidbox,Insensitivetovalueof,e.g.,thispoint,median(1,3,4,7,1x1010)=4mean(1,3,4,7,1x1010)2x109,Medianiswaylesssensitivetooutlinersthanmean,.,MedianFilter,10pointsineachmedian,Outlierhasnoticeablelessimpact,outlier,.,Joke,Theoneaboutthestatisticianswhogohunting,.,KalmanFilter,MyfavoritebookonKalmanfiltering,MeanandmedianfiltersassumesmoothnessKalmanfilteraddsassumptionabouttrajectory,Assumedtrajectoryisparabolic,data,dynamics,Weightdataagainstassumptionsaboutsystemsdynamics,Bigdifference#1:Kalmanfilterincludes(helpful)assumptionsaboutbehaviorofmeasuredprocess,.,KalmanFilter,Bigdifference#2:Kalmanfiltercanincludestatevariablesthatarenotmeasureddirectly,Kalmanfilterseparatesmeasuredvariablesfromstatevariables,Runningexample:measure(x,y)coordinates(noisy),Runningexample:estimatelocationandvelocity(!),Measure:,Inferstate:,.,KalmanFilterMeasurements,Measurementvectorisrelatedtostatevectorbyamatrixmultiplicationplusnoise.,Runningexample:,Inthiscase,measurementsarejustnoisycopiesofactuallocationMakessensornoiseexplicit,e.g.GPShasofaround4meters,.,KalmanFilterDynamics,Insertabiasforhowwethinksystemwillchangethroughtime,locationisstandardstraight-linemotion,velocitychangesrandomly(becausewedonthaveanyideawhatitactuallydoes),.,KalmanFilterIngredients,Hmatrix:givesmeasurementsforgivenstate,Measurementnoise:sensornoise,matrix:givestimedynamicsofstate,Processnoise:uncertaintyindynamicsmodel,.,KalmanFilterRecipe,JustpluginmeasurementsandgoRecursivefiltercurrenttimestepusesstateanderrorestimatesfromprevioustimestep,Bigdifference#3:KalmanfiltergivesuncertaintyestimateintheformofaGaussiancovariancematrix,.,HardtopickprocessnoisesProcessnoisemodelsouruncertaintyinsystemdynamicsHereitaccountsforfactthatmotionisnotastraightline,Velocitymodel:,“Tuning”s(bytryingabunchofvalues)givesbetterresult,.,ParticleFilter,DieterFoxetal.,WiFitrackinginamulti-floorbuilding,Multiple“particles”ashypothesesParticlesmovebasedonprobabilisticmotionmodelParticlesliveordiebasedonhowwelltheymatchsensordata,.,ParticleFilter,DieterFoxetal.,Allowsmulti-modaluncertainty(KalmanisunimodalGaussian)Allowscontinuousanddiscretestatevariables(e.g.3rdfloor)Allowsrichdynamicmodel(e.g.mustfollowfloorplan)Canbeslow,especiallyifstatevectordimensionistoolarge(e.g.(x,y,identity,activity,nextactivity,emotionalstate,),.,ParticleFilterIngredients,z=measurement,x=state,notnecessarilysameProbabilitydistributionofameasurementgivenactualvalueCanbeanything,notjustGaussianlikeKalmanButweuseGaussianforrunningexample,justlikeKalman,Forrunningexample,measurementisnoisyversionofactualvalue,E.g.measuredspeed(inz)willbeslowerifemotionalstate(inx)is“tired”,.,ParticleFilterIngredients,Probabilisticdynamics,howstatechangesthroughtimeCanbeanything,e.g.TendtogosloweruphillsAvoidleftturnsAttractedtoScandinavianpeopleClosedformnotnecessaryJustneedadynamicsimulationwithanoisecomponentButweuseGaussianforrunningexample,justlikeKalman,xi,xi-1,randomvector,.,ParticleFilterAlgorithm,StartwithNinstancesofstatevectorxi(j),i=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东云浮市罗定市市场监督管理局招用青年见习人员2人模拟试卷附答案详解(完整版)
- 2025安徽安庆望江县融媒体中心急需紧缺专业技术人员招聘2人考前自测高频考点模拟试题及答案详解(新)
- 2025年上半年全省事业单位公开招聘工作人员(含教师)笔试南充考区考前自测高频考点模拟试题附答案详解(突破训练)
- 2025湖南省儿童医院高层次人才公开招聘16人模拟试卷带答案详解
- 2025年度郑州工程技术学院招聘高层次人才81名考前自测高频考点模拟试题附答案详解(突破训练)
- 2025昆明市禄劝县人民法院聘用制书记员招录(2人)考前自测高频考点模拟试题及答案详解(各地真题)
- 2025湖南株洲市行政审批服务局公开招聘中级雇员2人模拟试卷及答案详解(夺冠)
- 2025年度郑州警察学院招聘人才(第二批)15名考前自测高频考点模拟试题及一套答案详解
- 2025广西柳州市考试录用公务员(人民警察)体能测评模拟试卷及答案详解(必刷)
- 2025广东茂名市化州市播扬镇敬老院招聘10人考前自测高频考点模拟试题完整参考答案详解
- 中式烹调师技能厨师培训课件
- 述情障碍的社会根源
- 家园2-菲雅利帝国全贸易模式全商品
- 四级词汇熟词僻义表
- D500-D505 2016年合订本防雷与接地图集
- 吊装作业危险源辨识与风险评价
- YS/T 643-2007水合三氯化铱
- 幼儿成长档案电子通用版
- Linux操作系统课件(完整版)
- 短视频:策划+拍摄+制作+运营课件(完整版)
- 首都师范大学本科生重修课程自学申请表
评论
0/150
提交评论