轨迹数据挖掘-介绍ppt课件_第1页
轨迹数据挖掘-介绍ppt课件_第2页
轨迹数据挖掘-介绍ppt课件_第3页
轨迹数据挖掘-介绍ppt课件_第4页
轨迹数据挖掘-介绍ppt课件_第5页
已阅读5页,还剩37页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.,Chapter1TrajectoryPreprocessing,JohnKrummMicrosoftResearchRedmond,WAUSA,Wang-ChienLeePennsylvaniaStateUniversityUniversityPark,PAUSA,.,Trafficinfo,Navigation,Localweather,Emergencyservice,Logistics,Location-BasedServices,GeographicalInformationSystem(GIS),Tracking,MobileCommerce,.,SystemModelforLBSs,Thelocationsoftrackedmovingobjectsarereportedtothelocationserverviawirelesscommunications.TheLBSapplicationssubmitqueriestotheservertoretrievemovingobjectdataforanalysisorotherapplicationneeds.,.,Trajectories,.,PositioningtechnologiesGlobalpositioningsystem(GPS)Network-based(e.g.,usingcellularorwifiaccesspoints)Dead-Reckoning(forestimation),.,MobileObjectDatabases,ResearchcommunitieshavemadetremendousresearchefforttosupportLBSs.E.g.,Mobileobjectdatabases(MODs)Inadditiontoconventionalsearchfunctionsofmovingobjects,manyLBSapplicationsneedtoanalyzeandminevariousmovingpatternsandphenomenonoftrackedobjects.TrajectoryManagement:trajectoriesofmovingobjects,i.e.,theirgeographical-temporaltraces,areoftentreatedasfirst-classcitizensinMODs.,.,TrajectoryPreprocessing,ProblemstosolvewithtrajectoriesLotsoftrajectorieslotsofdataNoisecomplicatesanalysisandinferenceEmploythedatareductionandfilteringtechniquesSpecializeddatacompressionfortrajectoriesPrincipledfilteringtechniques,.,Part1-Compression,.,PerformanceMetrics,Trajectorydatareductiontechniquesaimstoreducetrajectorysizew/ocompromisingmuchprecision.PerformanceMetricsProcessingtimeCompressionRateErrorMeasureThedistancebetweenalocationontheoriginaltrajectoryandthecorrespondingestimatedlocationontheapproximatedtrajectoryisusedtomeasuretheerrorintroducedbydatareduction.ExamplesarePerpendicularEuclideanDistanceorTimeSynchronizedEuclideanDistance.,.,IllustrationofErrorMeasures,PerpendicularEuclideanDistanceTimeSynchronizedEuclideanDistance,.,TrajectoryDataReduction,ClassificationofDataReductionTechniques.BatchedCompression:Collectfullsetoflocationpointsandthencompressthedatasetfortransmissiontothelocationserver.Applications:contentsharingsitessuchasEverytrailandBikely.TechniquesincludeDouglas-PeuckerAlgorithm,top-downtime-ratio(TD-TR),andBellmansalgorithm.On-lineDataReductionSelectiveon-lineupdatesofthelocationsbasedonspecifiedprecisionrequirements.Applications:trafficmonitoringandfleetmanagement.TechniquesincludeReservoirSampling,SlidingWindow,andOpenWindow.,.,BatchCompression-Douglas-Peucker(DP)Algorithm,PreservedirectionaltrendsintheapproximatedtrajectoryusingtheperpendicularEuclideandistanceastheerrormeasure.Replacetheoriginaltrajectorybyanapproximatelinesegment.Ifthereplacementdoesnotmeetthespecifiederrorrequirement,itrecursivelypartitionstheoriginalproblemintotwosubproblemsbyselectingthelocationpointcontributingthemosterrorsasthesplitpoint.Thisprocesscontinuesuntiltheerrorbetweentheapproximatedtrajectoryandtheoriginaltrajectoryisbelowthespecifiederrorthreshold.,.,IllustrationofDPAlgorithm,Splitatthepointwithmosterror.RepeatuntilalltheerrorsR),randomlydecides,withaprobabilityofR/k,whethertokeepthislocationpointornot.Ifthedecisionispositive,oneoftheRexistinglocationpointsinthereservoirisdiscardedrandomlytomakespaceforthenewlocationpoint.thereservoiralgorithmalwaysmaintainsauniformsampleoftheevolvingtrajectorywithoutevenknowingtheeventualtrajectorysize.,.,On-lineCompressionSlidingWindow,Fitthelocationpointsinagrowingslidingwindowwithavalidlinesegmentandcontinuetogrowtheslidingwindowuntiltheapproximationerrorexceedssomeerrorbound.FirstinitializethefirstlocationpointofatrajectoryastheanchorpointpaandthenstartstogrowtheslidingwindowWhenanewlocationpointpiisaddedtotheslidingwindow,thelinesegmentpapiisusedtofitallthelocationpointswithintheslidingwindow.Aslongasthedistanceerrorsagainstthelinesegmentpapiaresmallerthantheuser-specifiederrorthreshold,theslidingwindowcontinuestogrow.Otherwise,thelinesegmentpapi-1isincludedaspartoftheapproximatedtrajectoryandpiissetasthenewanchorpoint.Thealgorithmcontinuesuntilallthelocationpointsintheoriginaltrajectoryarevisited.,.,SlidingWindow-Illustration,Whiletheslidingwindowgrowsfromp0top0,p1,p2,p3,alltheerrorsbetweenfittinglinesegmentsandtheoriginaltrajectoryarenotgreaterthanthespecifiederrorthreshold.Whenp4isincluded,theerrorforp2exceedsthethreshold,sop0p3isincludedintheapproximatetrajectoryandp3issetastheanchortocontinue.,.,OpenWindow,Differentfromtheslidingwindow,chooselocationpointswiththehighesterrorintheslidingwindowastheclosingpointoftheapproximatinglinesegmentaswellasthenewanchorpoint.Whenp4isincluded,theerrorforp2exceedsthethreshold,sop0p2isincludedintheapproximatetrajectoryandp2issetastheanchortocontinue.,.,Part1Summary,TrajectoryDataCompressionBatchDouglas-Peucker(DP)Top-DownTimeRatio(TDTR)timeincludedBellmandynamicprogrammingOn-lineSlidingwindowOpenwindow(variationofslidingwindow),.,Part2-Filtering,GoalsSmoothnoise&outliersInferhigherlevelvalues(e.g.speed),TechniquesMeanandmedianKalmanfilterParticlefilter,.,RunningExample,Trackamovingpersonin(x,y)1075(x,y)measurements=1secondManuallyaddedoutliers,measurementvector,actuallocation,noise,zeromean,standarddeviation=4meters,Notation,.,MeanFilter,Alsocalled“movingaverage”and“boxcarfilter”Applytoxandymeasurementsseparately,zx,t,Filteredversionofthispointismeanofpointsinsolidbox,“Causal”filterbecauseitdoesntlookintofutureCauseslagwhenvalueschangesharplyHelpfixwithdecayingweights,e.g.Sensitivetooutliers,i.e.onereallybadpointcancausemeantotakeonanyvalueSimpleandeffective(Iwillnotvotetorejectyourpaperifyouusethistechnique),.,MeanFilter,10pointsineachmean,OutlierhasnoticeableimpactIfonlythereweresomeconvenientwaytofixthis,outlier,.,MedianFilter,zx,t,Filteredversionofthispointismeanmedianofpointsinsolidbox,Insensitivetovalueof,e.g.,thispoint,median(1,3,4,7,1x1010)=4mean(1,3,4,7,1x1010)2x109,Medianiswaylesssensitivetooutlinersthanmean,.,MedianFilter,10pointsineachmedian,Outlierhasnoticeablelessimpact,outlier,.,Joke,Theoneaboutthestatisticianswhogohunting,.,KalmanFilter,MyfavoritebookonKalmanfiltering,MeanandmedianfiltersassumesmoothnessKalmanfilteraddsassumptionabouttrajectory,Assumedtrajectoryisparabolic,data,dynamics,Weightdataagainstassumptionsaboutsystemsdynamics,Bigdifference#1:Kalmanfilterincludes(helpful)assumptionsaboutbehaviorofmeasuredprocess,.,KalmanFilter,Bigdifference#2:Kalmanfiltercanincludestatevariablesthatarenotmeasureddirectly,Kalmanfilterseparatesmeasuredvariablesfromstatevariables,Runningexample:measure(x,y)coordinates(noisy),Runningexample:estimatelocationandvelocity(!),Measure:,Inferstate:,.,KalmanFilterMeasurements,Measurementvectorisrelatedtostatevectorbyamatrixmultiplicationplusnoise.,Runningexample:,Inthiscase,measurementsarejustnoisycopiesofactuallocationMakessensornoiseexplicit,e.g.GPShasofaround4meters,.,KalmanFilterDynamics,Insertabiasforhowwethinksystemwillchangethroughtime,locationisstandardstraight-linemotion,velocitychangesrandomly(becausewedonthaveanyideawhatitactuallydoes),.,KalmanFilterIngredients,Hmatrix:givesmeasurementsforgivenstate,Measurementnoise:sensornoise,matrix:givestimedynamicsofstate,Processnoise:uncertaintyindynamicsmodel,.,KalmanFilterRecipe,JustpluginmeasurementsandgoRecursivefiltercurrenttimestepusesstateanderrorestimatesfromprevioustimestep,Bigdifference#3:KalmanfiltergivesuncertaintyestimateintheformofaGaussiancovariancematrix,.,HardtopickprocessnoisesProcessnoisemodelsouruncertaintyinsystemdynamicsHereitaccountsforfactthatmotionisnotastraightline,Velocitymodel:,“Tuning”s(bytryingabunchofvalues)givesbetterresult,.,ParticleFilter,DieterFoxetal.,WiFitrackinginamulti-floorbuilding,Multiple“particles”ashypothesesParticlesmovebasedonprobabilisticmotionmodelParticlesliveordiebasedonhowwelltheymatchsensordata,.,ParticleFilter,DieterFoxetal.,Allowsmulti-modaluncertainty(KalmanisunimodalGaussian)Allowscontinuousanddiscretestatevariables(e.g.3rdfloor)Allowsrichdynamicmodel(e.g.mustfollowfloorplan)Canbeslow,especiallyifstatevectordimensionistoolarge(e.g.(x,y,identity,activity,nextactivity,emotionalstate,),.,ParticleFilterIngredients,z=measurement,x=state,notnecessarilysameProbabilitydistributionofameasurementgivenactualvalueCanbeanything,notjustGaussianlikeKalmanButweuseGaussianforrunningexample,justlikeKalman,Forrunningexample,measurementisnoisyversionofactualvalue,E.g.measuredspeed(inz)willbeslowerifemotionalstate(inx)is“tired”,.,ParticleFilterIngredients,Probabilisticdynamics,howstatechangesthroughtimeCanbeanything,e.g.TendtogosloweruphillsAvoidleftturnsAttractedtoScandinavianpeopleClosedformnotnecessaryJustneedadynamicsimulationwithanoisecomponentButweuseGaussianforrunningexample,justlikeKalman,xi,xi-1,randomvector,.,ParticleFilterAlgorithm,StartwithNinstancesofstatevectorxi(j),i=0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论