




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概念:是以分子氧作为最终电子(或氢)受体的氧化过程;是最普遍、最重要的生物氧化方式。途径:EMP,TCA循环特点:必须指出,在有氧呼吸作用中,底物的氧化作用不与氧的还原作用直接偶联,而是底物在氧化过程中释放的电子先通过电子传递链(由各种电子传递体,如NAD,FAD,辅酶Q和各种细胞色素组成)最后才传递到氧。,2、有氧呼吸,由此可见,TCA循环与电子传递是有氧呼吸中两个主要的产能环节。,Figure.Aerobicrespiration,16,电子传递与氧化呼吸链,定义:由一系列氧化还原势不同的氢传递体组成的一组链状传递顺序。在氢或电子的传递过程中,通过与氧化磷酸化反应发生偶联,就可产生ATP形式的能量。部位:原核生物发生在细胞膜上,真核生物发生在线粒体内膜上成员:电子传递是从NAD到O2,电子传递链中的电子传递体主要包括FMN、CoQ、细胞色素b、c1、c、a、a和一些铁硫旦白。这些电子传递体传递电子的顺序,按照它们的氧化还原电势大小排列,电子传递次序如下:,MH2NADFMNC0Qb(-0.32v)(0.0v)C1Caa3O2H2O(+0.26)(+0.28)(+0.82v)呼吸链中NAD+/NADH的E0值最小,而O2/H2O的E0值最大,所以,电子的传递方向是:NADHO2上式表明还原型辅酶的氧化,氧的消耗,水的生成。NADH+H+和FADH2的氧化,都有大量的自由能释放。证明它们均带电子对,都具有高的转移势能,它推动电子从还原型辅酶顺坡而下,直至转移到分子氧。电子传递伴随ADP磷酸化成ATP全过程,故又称为氧化呼吸链。,呼吸链的功能:一是传递电子;二是将电子传递过程中释放的能量合成ATP这就是电子产地磷酸化作用(或称氧化磷酸化作用)。,典型的呼吸链,原核生物呼吸链的特点,存在于细胞膜上呼吸链中的氧还载体取代性强,如CoQ可被MK取代呼吸链中的氧还载体的数量在不同的种间,不同的环境条件下可增可减有分支呼吸链的存在,表现在来自不同的底物的还原力进入呼吸链时有不同的分支,不同的微生物细胞色素系统有别,如E.Coli在缺氧时,呼吸链分为两支,即Cyt.b556Cyt.o;Cyt.b558Cyt.d,NAD:含有它的酶能从底物上移出一个质子和两个电子,成为还原态NDAH+H+。FAD和FMN:黄素蛋白的辅基,铁硫蛋白(Fe-S):传递电子的氧化还原载体辅基为分子中的含铁硫的中心部分。存在于呼吸链中几种酶复合体中,参与膜上的电子传递。在固氮、亚硫酸还原、亚硝酸还原、光合作用、分子氢的激活和释放以及链烷的氧化作用中也有作用。在呼吸链的“2Fe+2S”中心每次仅能传递一个电子。泛醌(辅酶Q):脂溶性氢载体。广泛存在于真核生物线粒体内膜和革兰氏阴性细菌的细胞膜上;革兰氏阳性细菌和某些革兰氏阴性细菌则含甲基萘醌。在呼吸链中醌类的含量比其他组分多1015倍,其作用是收集来自呼吸链各种辅酶和辅基所输出的氢和电子,并将它们传递给细胞色素系统。细胞色素系统:位于呼吸链后端,功能是传递电子。,微生物中重要的呼吸链组分,NAD+isoneofasmallnumberofbiomoleculesthatfunctionasredoxcarriers;alternatelygetreduced,thenoxidized.ViewNADinoxidizedandreducedformsNote:verysmallconcentrationsofNAD+incell;somustcontinuallyberecycledfrom(red)to(ox)stateandback.Likeanelectronshuttle.OtherredoxcarriersFAD-carries2HUbiquinone(CoenzymeQ)-carries2HHemegroups(incytochromes)-carriessingleelectronViewFADandhemestructures,RedoxCarriers,Figure.TheStructureofNADandNADP,细胞色素系统,功能:从泛醌中接受电子,并将同等数目的质子推到线粒体膜或细胞膜外的溶液中。分类:线粒体的电子传递链至少含有5种不同的细胞色素,按其吸收光谱和氧还电位的差别分为cyt.a,cyt.a3,cyt.b,cyt.c和cyt.o等。细胞色素bcc1aa3整合在一起存在。Cytaa3以复合物形式存在,称为细胞色素氧化酶。细胞色素aa3含有两个必需的铜原子。由还原型a3将电子直接传递给分子氧。电子从CoQ传到bcc1,Fe-S旦白,aa3。结构组成:以血红素为辅基,通过其卟啉分子中心铁原子的价电荷的变化而传递电子。cyt.a3即细胞色素氧化酶是许多微生物的末端氧化酶,能催化4个电子还原氧的反应,激活分子氧。,ATP的结构和生成,2.ATP的生成方式:,微生物能量代谢活动中所涉及的主要是ATP(高能分子)形式的化学能.ATP是生物体内能量的载体或流通形式.当微生物获得能量后,都是先将获得的能量转换成ATP.当需要能量时,ATP分子上的高能键水解,重新释放出能量.,光合磷酸化氧化磷酸化,底物水平磷酸化电子传递磷酸化,1.结构:,Figure.ThestructureofATP,18,光合磷酸化:利用光能合成ATP的反应.光合磷酸化作用将光能转变成化学能,以用于从二氧化碳合成细胞物质.主要是光合微生物。光合微生物:藻类、蓝细菌、光合细菌(包括紫色细菌、绿色细菌和嗜盐菌等)。细菌的光合作用与高等植物不同的是,除蓝细菌具有叶绿素、能进行水的裂解进行产氧的光合作用外,其他细菌没有叶绿素,只有菌绿素或其他光合色素,只能裂解无机物(如H2、H2S等)或简单有机物,进行不产氧的光合作用。,氧化磷酸化:利用化合物氧化过程中释放的能量生成ATP的反应。氧化磷酸化生成ATP的方式有两种:底物水平磷酸化不需氧电子传递磷酸化需氧。底物水平磷酸化:底物水平磷酸化是在某种化合物氧化过程中可生成一种含高能磷酸键的化合物,这个化合物通过相应的酶作用把高能键磷酸根转移给ADP,使其生成ATP。这种类型的氧化磷酸化方式在生物代谢过程中较为普遍。催化底物水平磷酸化的酶存在于细胞质内。,底物水平磷酸化举例:,由于脱掉一个水分子,2一磷酸甘油酸的低能酯键转变为2一磷酸烯醇丙酮酸中的高能烯醇键。这种高能连接的磷酸可以转给ADP,产生ATP分子。在微生物代谢活动中,重要的高能磷酸化合物除上述一些物质外,还有1,3一二磷酸甘油酸和乙酰磷酸等。,在电子传递磷酸化中,通过呼吸链传递电子,将氧化过程中释放的能量和ADP的磷酸化偶联起来,形成ATP。呼吸链中的电子传递体主要由各种辅基和辅酶组成,最重要的电子传递体是泛琨(即辅酶Q)和细胞色素系统。在不同种类的微生物中细胞色素的成员是不同的。通过呼吸链生成的ATP数量主要是根据呼吸链成员的多少而不同,而呼吸链的组成因微生物种类而异,如酵母菌可生成3个ATP,而细菌大约只生成1个ATP磷酸化作用是在电子自供体向最终受体的传递过程中发生的。从氧化营养物质产生的一对电子或氢原子向最终电子受体转移时,中间经过一系列电子传递体,每个电子传递体构成一个氧化还原系统,这一系列电子传递体在不同生物中有其自己一定的排列次序,构成一条电子传递链,因而称为呼吸链。流动的电子通过呼吸链时逐步释放出能量生成ATP。,电子传递磷酸化,呼吸链在传递氢或电子的过程中,通过与氧化磷酸化作用的偶联,产生生物的通用能源ATP。目前获得多数学者接受的是化学渗透学说。主要观点:在氧化磷酸化过程中,通过呼吸链酶系的作用,将底物分子上的质子从膜的内侧传递至外侧,从而造成了质子在膜两侧分布的不均衡,即形成了质子梯度差(又称质子动势、pH梯度等)。这个梯度差就是产生ATP的能量来源,因为它可通过ATP酶的逆反应,把质子从膜的外侧再输回到内侧,结果一方面消除了质子梯度差,同时就合成了ATP。,氧化磷酸化产能机制,氧化磷酸化与质子梯度差,一个NAD分子,通过呼吸链进行氧化,可以产生3个ATP分子。它分别在三个位置,各产生一个ATP。如图41所示,第一个ATP大约在辅酶1和黄素蛋白之间;第二个ATP大约在细胞色素b和cl之间;第三个ATP大约在细胞色素c和a之间。,电子传递磷酸化举例,回补途径,TCA循环重要功能除产能外,为一些氨基酸和其它化合物的合成提供了中间产物;生物合成中所消耗的中间产物若得不到补充,循环就会中断;回补方式:通过某些化合物的CO2固定作用,一些转氨基酶所催化的反应也能合成草酰乙酸和-酮戊二酸,通过乙醛酸循环,通过某些化合物的CO2固定作用使三羧酸循环的中间产物得到回补:丙酮酸羧化酶:CO2+丙酮酸+ATP+H2OMg+草酰乙酸+ADP+Pi磷酸烯醇式丙酮酸羧化酶:CO2+PEP+H2O草酰乙酸+H3PO4苹果酸酶:CO2+丙酮酸+NADPH+H+苹果酸+NADP+,为了能够在己糖或戊糖的中间代谢物上进行好氧生长,异养微生物至少要具备上述几种酶之种的一个酶。,CO2固定作用补充TCA环的中间产物,乙醛酸循环,草酰乙酸,柠檬酸,琥珀酸,异柠檬酸,苹果酸,延胡索酸,乙醛酸,乙酰CoA,乙酰CoA,乙酸,乙酸,乙醛酸循环,能够利用乙酸的微生物具有乙酰CoA合成酶,它使乙酸转变为乙酰CoA;然后在异柠檬酸裂解酶和苹果酸合成酶的作用下进入乙醛酸循环。乙醛酸循环的主要反应:异柠檬酸琥珀酸+乙醛酸乙醛酸+乙酸苹果酸琥珀酸+乙酸异柠檬酸净反应:2乙酸苹果酸,回补顺序,谷氨酸,+NH3,谷氨酸脱氢酶,-酮戊二酸氧化酶,柠檬酸发酵,一、菌种:能产生柠檬酸的菌种很多,但以霉菌为主,其中又以黑曲霉产生柠檬酸的能力较强,并能利用多种碳源,故常是生产上使用的菌种。二、发酵机理:细胞内有三羧酸循环和乙醛酸循环;柠檬酸合成酶活力较高,而乌头酸酶或异柠檬酸脱氢酶可被某些因素,如金属离子的缺乏,受到抑制,这有利于柠檬酸的积累。三、工艺流程:发酵液的pH值对柠檬酸生成影响很大;pH23时,发酵产物主要是柠檬酸;pH值中性或碱性时,会产生较多草酸和葡萄糖酸;可往培养基中加入亚铁氰化钾或采取育种手段改造菌种,使乌头酸酶或异柠檬酸脱氢酶缺失或尽量降低活性,以阻碍TCA循环的正常进行,从而增加柠檬酸的积累。,谷氨酸发酵,一、谷氨酸发酵菌种:CorynebacteriumpekinenseCorynebacteriumglutamicumBrevibacteriumflavu二、发酵机理:谷氨酸以-酮戊二酸为碳架;当以糖质为发酵原料时,合成途径包括EMP,HMP,TCA循环,乙醛酸循环等;谷氨酸产生菌的-酮戊二酸氧化酶活力很弱或缺少,而谷氨酸脱氢酶的活力要很高;生物素是谷氨酸产生菌必需的一种维生素,在谷氨酸生物合成中起着重要作用,缺乏或量太高都会使谷氨酸合成受阻。生物素通过影响细胞膜的通透性而影响谷氨酸发酵。,概念:以无机氧化物中的氧作为最终电子(和氢)受体的氧化作用。一些厌氧和兼性厌氧微生物在无氧条件下进行无氧呼吸.无机氧化物:如NO3-、NO2-、SO42-、S2O32-等。在无氧呼吸过程中,电子供体和受体之间也需要细胞色素等中间电子递体,并伴随有磷酸化作用,底物可被彻底氧化,可产生较多能量,但不如有氧呼吸产生的能量多。如:以硝酸钾为电子受体进行无氧呼吸时,可释放出1796.14KJ自由能。,3、无氧呼吸,AnaerobicRespiration1.ThefinalelectronacceptorsinanaerobicrespirationincludeNO3-,S042andC032-.Nitrate(NO3-)isreducedtonitrite(NO2-)orfurtherviadenitrificationtonitrousoxide(N2O)ornitrogengas(N2)bysomebacteria,e.g.,PseudomonasorBacillus.Thisreactionisimportantinthenitrogencycleoccurri
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 森林火灾知识培训课件
- 物业公司薪酬体系实施方案
- 2025年初高中体育与健康课程教师招聘考试运动技能测试模拟题集
- 桥梁监控课件
- 高血压护理业务学习试题及答案
- 《机械员》考试题库含答案(培优b卷)
- 2025年工业节能减排技术专家招聘笔试模拟题详解及备考指南
- 2025年碳足迹评价师中级实操面试题及操作指南
- 2025年碳汇计量评估知识体系梳理与高级模拟题实战训练
- 2025年审计招聘笔试实战模拟题集及解析
- 无人车项目计划书范文大全
- 高等教育十五五发展规划
- 股权转让及公司业绩承诺补充协议模板
- 仓管员安全培训课件
- T/QX 005-2021加油站油罐机械清洗作业规范
- T/CECS 10226-2022抗裂硅质防水剂
- 人教鄂教版科学 四年级上册 第一单元 多样的动物 单元教学解读
- 2025年江西赣州市融资担保集团有限公司招聘笔试参考题库附带答案详解
- 限制类医疗技术管理
- 2024-2025年第二学期学校国际交流合作计划
- 快递驿站合作合同协议
评论
0/150
提交评论