




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,平面体系的几何构造分析,第二章,2-1几何构造分析的基本概念,2-2几何不变体系的组成规律,2-3平面体系的计算自由度,2,2-1几何构造分析的基本概念,一、几何构造分析的目的,1.判断某个体系是否为几何不变体系,因为,只有几何不变体系才能作为结构使用;此,外应根据几何不变体系的规律设计新结构。,2.正确区分静定结构与超静定结构。,二、基本概念,1.几何不变体系与几何可变体系,3,几何不变体系,4,瞬变体系本来几何可变,经微小位移后又成,为几何不变的体系称为瞬变体系。,瞬变体系,几何可变体系不能作为结构来使用。,5,2.刚片,由于不考虑材料的应变,可以把一根梁、一根链杆或一个几个不变部分作为一个刚体,在几何构造分析中称为刚片。,3.自由度,体系在平面内运动时,可以独立变化的几何参数的数目称为自由度。,1)一个结点在平面内有两个自由度,因为确定该结点在平面内的位置需要两个独立的几何参数x、y。,6,2)一个刚片在平面内有三个自由度,因为确定该刚片在平面内的位置需要三个独立的几何参数x、y、。,4.约束,凡是能减少体系自由度的装置就称为约束。,7,1)链杆,约束的种类分为:,链杆约束,简单链杆仅连结两个结点的杆件称为简单链杆。一根简单链杆能减少一个自由度,故一根简单链杆相当于一个约束。,8,n=3,复杂链杆连结三个或三个以上结点的杆件称为复杂链杆,一根复杂链杆相当于(2n-3)根简单链杆,其中n为一根链杆连结的结点数。,2)铰,一个简单铰能减少体系两个自由度,故相当于两个约束。,9,3)刚性连结,看作一个刚片,若连结的刚片数为m,则该复杂铰相当于(m-1)个简单铰,故其提供的约束数为2(m-1)个。,10,4)瞬铰(虚铰),两根链杆的约束作用相当于在链杆交点处一个简单铰所起的约束作用。故两根链杆可以看作为在交点处有一个瞬铰(虚铰)。,关于点的情况需强调几点:,每一个方向有一个点;,不同方向有不同点;,各点都在同一直线上,此直线称为线;,各有限点都不在线上。,相交在点,11,2-2几何不变体系的组成规律,一、几何不变体系的组成规律,基本规律:三角形规律。,1.规律1一个结点与一个刚片的连接,一个结点与一个刚片用不共线的两根链杆相连,则组成几何不变体系且无多余约束。,被约束对象:结点A,刚片I,提供的约束:两根链杆1,2,12,右图示体系,结点A、刚片I由共线的链杆1,2相连,是瞬变体系。,2.规律2两个刚片之间的连接,两个刚片用一个铰以及与该铰不共线的一根链杆相连,则组成几何不变体系且无多余约束。,被约束对象:刚片I,II,提供的约束:铰A及链杆1,13,铰A也可以是瞬铰,如右图示。,3.规律3三个刚片之间的连接,三个刚片用三个铰两两相连,且三个铰不在同一直线上,则组成几何不变体系且无多余约束。,被约束对象:刚片I,II,III,提供的约束:铰A、B、C,14,刚片I,II用铰A连接,刚片I,III用铰B连接,刚片II,III用铰C连接,4.规律4两个刚片之间的连接,两个刚片用三根不交于同一点的链杆相连,则组成几何不变体系且无多余约束。,提供的约束:链杆1,2,3,被约束对象:刚片I,II,15,5.关于无穷远瞬铰的情况,一个瞬铰C在无穷远处,铰A、B连线与形成瞬铰的链杆1、2不平行,故三个铰不在同一直线上,该体系几何不变且无多余约束(图a)。,16,瞬铰B、C在两个不同方向的无穷远处,它们对应于无穷线上两个不同的点,铰A位于有限点。由于有限点不在无穷线上,故三铰不共线,体系为几何不变且无多余约束(见图b)。,17,形成瞬铰B、C的四根链杆相互平行(不等长),故铰B、C在同一无穷远点,所以三个铰A、B、C位于同一直线上,故体系为瞬变体系(见图c)。,18,二、举例,基础看作一个大刚片;要区分被约束的刚片及提供的约束;在被约束对象之间找约束;除复杂链杆和复杂铰外,约束不能重复使用。,解题思路:,例2-2-1试分析图a)所示体系的几何构造。,19,1)被约束对象:刚片I,II及结点D。,刚片I、II用链杆1、2、3相连,符合规律4,组成大刚片;,解:,大刚片、结点D用链杆4、5相连,符合规律1。故体系为几何不变且无多余约束。,20,2)被约束对象:刚片I,II,III及结点D,见图b)。,刚片I、II用链杆1、2相连(瞬铰o);刚片I、III用铰B相连;刚片II、III用铰A相连。铰A、B、o不共线,符合规律3,组成大刚片。,大刚片与结点D用链杆3、4相连,符合规律1。故体系几何不变且无多余约束。,解:,21,例2-2-2试分析图示体系的几何构造。,刚片I、II用链杆1、2、3相连,符合规律4。,故该体系几何不变且无多余约束。,解:,22,例2-2-3试分析图示体系的几何构造。,刚片I、II用链杆1、2相连,(瞬铰A);,刚片I、III用链杆3、4相连,(瞬铰B);,刚片II、III用链杆5、6相连,(瞬铰C)。,A、B、C三铰均在无穷远处,位于同一无穷线上,故为瞬变体系。,解:,23,例2-2-4试分析图示体系的几何构造。,刚片I、II用链杆1、2相连(瞬铰A),刚片I、III用链杆3、4相连(瞬铰B),因为A、B、C三铰不在同一直线,符合规律3,故该体系几何不变且无多余约束。,解:,24,思考题:试分析下图示各体系的几何构造组成。,a),b),25,c),d),e),f),26,小结:,3)注意约束的等效替换。,27,2-3平面体系的计算自由度,一、复杂链杆与复杂铰,1.简单链杆与复杂链杆,简单链杆仅连接两个结点的链杆称为简单链杆,一根简单链杆相当于一个约束。,复杂链杆连接三个或三个以上结点的链杆称为复杂链杆。一根复杂链杆相当于(2n-3)根简单链杆,其中n为一根链杆连接的结点数。,28,2.简单铰与复杂铰,简单铰只与两个刚片连接的铰称为简单铰。,若刚片数为m,则该复杂铰相当与(m-1)个简单铰,故其提供的约束数为2(m-1)。,一个简单铰能减少体系两个自由度,故相当于两个约束。,复杂铰与三个或三个以上刚片连接的铰称为复杂铰。,3.封闭刚架,29,二、计算自由度,1.将体系看作刚片、铰、刚结以及链杆组成的体系,其中刚片为被约束对象,铰、刚结、链杆为约束。则计算自由度公式为:,在求解时,地基的自由度为零,不计入刚片数。,30,2.将体系看作结点以及链杆组成的体系,其中结点为被约束对象,链杆为约束。则计算自由度公式为:,j结点数;,b简单链杆数。,3.混合公式约束对象为刚片和结点,约束为铰、刚结和链杆。则计算自由度公式为:,m、j、g、h、b意义同前。,31,4.一个体系若求得W0,一定是几何可变体系;若W0,则可能是几何不变体系,也可能是几何可变体系,取决于具体的几何组成。,所以W0是体系几何不变的必要条件,而非充分条件。,三、例题,例2-3-1试求图示体系的计算自由度。,解:,m=3g=0h=3b=3,32,例2-3-2求图示
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东揭阳市普宁市公安局招聘警务辅助人员80人模拟试卷及答案详解(易错题)
- 2025黑龙江饶河县公益性岗位招聘30人模拟试卷及一套参考答案详解
- 2025鄂尔多斯市消防救援支队招聘50名政府专职消防队员模拟试卷附答案详解(考试直接用)
- 2025年潍坊职业学院高层次高技能人才引进(招聘)(10人)模拟试卷(含答案详解)
- 2025年宝鸡先行电力(集团)有限责任公司招聘(4人)模拟试卷(含答案详解)
- 2025广西民族博物馆编外人员招聘1人模拟试卷及一套完整答案详解
- 2025年国家知识产权局知识产权发展研究中心招聘(3人)考前自测高频考点模拟试题完整参考答案详解
- 2025年甘肃省庆阳市新庄煤矿面向社会招聘生产性灵活用工206人模拟试卷完整答案详解
- 2025年临沂平邑县部分事业单位公开招聘教师(17名)模拟试卷及答案详解(新)
- 2025第十三届贵州人才博览会黔东南州企事业单位招聘838人考前自测高频考点模拟试题及答案详解(有一套)
- 科学教育:未来启航
- 金太阳九年级数学月考试卷及答案
- 地质技能竞赛试题及答案
- 现代农业装备与应用课件
- 2024年甘肃省临夏县人民医院公开招聘护理工作人员试题带答案详解
- 2025年氢气传感器市场分析报告
- 结肠癌围手术期的护理
- 环保科技股东合作协议示范文本
- 中职语文(拓展模块)中国科学技术史序言
- 子宫肌瘤教学查房
- 云南省昆明市2023-2024学年高一下学期7月期末质量检测英语试卷(含答案)
评论
0/150
提交评论