




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级数学专题复习求圆中阴影部分的面积,新郑市直中学杨根彦2007年5月,题组一,1.正方形ABCD边长为2cm,以B点为圆心,AB长为半径作弧,则图中阴影部分的面积为,2.边长为1的正方形ABCD绕点A逆时针旋转30到正方形ABCD,图中阴影部分的面积为,(4-)cm2,题组二,3.要在面积为1256m2的三角形广场ABC的三个角处各建一个半径相同的扇形草坪,要求草坪总面积为广场面积的一半,那么扇形的半径应是,20m,(取3.14),A、B、C、D、E相互外离,它们的半径都是1,顺次连结五个圆心,得到五边形ABCDE,则图中五个扇形的面积之和为,题组三,5.O2的弦AB切O1于C点且AB|O1O2,AB=8cm,则阴影部分的面积为,4.在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆半径为2,则阴影部分的面积为,2,16cm2,6.在ABC中,BAC=90,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为,7.A是半径为2的O外一点,OA=4,AB切O于B,弦BC|OA,连接AC,则阴影部分面积为,1,通过做以上三组题,你能总结出求阴影面积的方法吗?(相互交流),归纳总结:求阴影部分的面积有三种方法:1、和差法:S总体-S空白=S阴1、和差法把不规则图形分成几个规则图形的面积之和2、整体求解法(化零为整)3、移动法:将图形位置进行移动(平移.旋转.对称.割补)使其成为规则图形或者为使用和差法提供条件。包括割补法、平移法、旋转法、等积代换法。,课堂训练,A组,1.某长方形广场的四角都有一块半径相同的四分之一圆形的草地,若圆形的半径为r米,长方形的长为a米,宽为b米,用代数式表示空地的面积是,2.ABC中BC=4,以点A为圆心,以2为半径的A与BC相切于D,P为A上一点,且EPF=40,则阴影部分的面积=,ab-r2,3.有六个等圆按如图甲、乙、丙三种形状摆放,使邻圆互相外切,且圆心线分别构成正六边形、平行四边形、正三角形,将圆心连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q则()A、SPQB、SQPC、SP=QD、S=P=Q,(甲),(乙),(丙),D,4.图4中正比例函数与反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆。若点A的坐标为(1,2),则图中两个阴影面积的和为,B组,1.某种商品的商标图案如图(阴影部分)已知菱形ABCD的边长为4,A=60,是以A为圆心AB长为半径的弧是以B为圆心BC为半径的弧,则该商标图案的面积为,2.矩形ABCD中,BC=2,DC=4,以AB为直径的半圆O与DC相切于点E,则阴影部分的面积是,BD,CD,4,3.直线y=kx+b过M(1,3)N(-1,33)与坐标轴的交点为A、B,以AB为直径C,求此圆与y轴围成的阴影部分的面积。,4.AB是O的直径,点D.E是半圆的三等分点,AE.BD的延长线交于点C,若CE=2,则图中阴影部分的面积为,-,-,延伸迁移,综合应用,有一张矩形纸片ABCD,AD=4,上面有一个以AD为直径的半圆,正好与对边BC相切,如图(甲).将它沿DE折叠,使A点落在BC上,如图(乙),这时,半圆还露在外面的部分(阴影部分)的面积是,(甲),乙,C组,-,o,反思自我,想一想,你有哪些新的收获?,说出来,与同学们分享.,驶向胜利的彼挑战自我岸,(1)学会了求不规则图形的面积的一般方法(2)深入的理解了化归的数学思想(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃省白银市靖远县2025届数学七下期末学业水平测试试题含解析
- 2025届广东省北京师范大广州实验学校数学七下期末复习检测试题含解析
- 大学生情感困惑问题调查
- 流动人口计划生育工作总结十篇
- 泪腺日常护理指南
- 语言法律法规试题及答案
- 应届生校招:国企大数据岗位面试题目及答案
- 银行岗位面试题及答案
- 颛孙恩扬心得体会模版
- 飞行安全标准化管理框架
- 2025年统计学专业期末考试题库-抽样调查方法应用案例分析试题
- 2025陕西中考:历史必背知识点
- 2025年下半年贵州乌江水电开发限责任公司大学毕业生招聘若干人易考易错模拟试题(共500题)试卷后附参考答案
- 《车载充电器》课件
- 2025年浙江东阳市九年级中考语文3月模拟试卷(附答案解析)
- 2024年沈阳市三支一扶考试真题
- 《绝经后出血》课件
- 食品合作商合同协议
- 中药人员考试试题及答案
- 2025年吉林省四平市梨树县中考二模历史试题(含答案)
- 脑梗死的介入治疗
评论
0/150
提交评论