信号与系统电子教案第二章本科_第1页
信号与系统电子教案第二章本科_第2页
信号与系统电子教案第二章本科_第3页
信号与系统电子教案第二章本科_第4页
信号与系统电子教案第二章本科_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1,SignalsandSystems,信号与系统,赵书俊郑州大学物理工程学院电子科学与仪器实验中心,第二章连续时间系统的时域分析(1),2,第二章连续时间系统的时域分析,2.1引言2.2微分方程的建立与求解2.3起始点的跳变2.4零输入响应与零状态响应2.5冲激响应与阶跃响应2.6卷积积分2.7卷积的性质,2.1引言,2.1引言,4,时域分析方法:不涉及任何变换,直接求解系统的微分、积分方程式,这种方法比较直观,物理概念比较清楚,是学习各种变换域分析方法的基础。,本章我们主要讨论输入、输出描述法。,一、系统数学模型的时域表示,时域分析方法包括:,2.1引言,5,卷积积分法:任意激励下的零状态响应可通过卷积积分来求。,二、系统分析过程,2.1引言,2.2微分方程的建立与求解,2.2微分方程的建立与求解,7,根据实际系统的物理特性列写系统的微分方程。对于电路系统,主要是根据元件特性约束和网络拓扑约束列写系统的微分方程。,元件特性约束:表征元件特性的关系式。例如二端元件电阻、电容、电感各自的电压与电流的关系等,四端元件互感的初、次级电压与电流的关系等。,网络拓扑约束:由网络结构决定的电压电流约束关系,KCL,KVL。,一、微分方程的建立,2.2微分方程的建立与求解,8,电感,电阻,电容,根据KCL,代入上面元件伏安关系,并化简有,这是一个代表RCL并联电路系统的二阶微分方程。,例:列写微分方程表示并联电路的端电压与激励间的关系。,解:,2.2微分方程的建立与求解,9,线性时不变(LTI)系统,其激励信号e(t)与响应信号r(t)之间的关系,可以用下列形式的n阶常系数线性微分方程式来描述:,方程的阶次n由独立的动态元件的个数决定。,二、微分方程的经典求解方法,2.2微分方程的建立与求解,10,微分方程的经典求解过程包括三步:,一、求齐次解rh(t)(系数待定)二、求特解rp(t)三、根据初始条件确定待定系数,完全解r(t)(全响应)齐次解rh(t)(自由响应)特解rp(t)(强迫响应),2.2微分方程的建立与求解,11,求齐次解:,令方程右边激励信号及其各界导数为0,得到齐次方程:,根据齐次方程形式,写出特征方程:,由特征方程求出n个特征根,则齐次解为,2.2微分方程的建立与求解,12,2.2微分方程的建立与求解,表2-1几种特征根情况下齐次解的形式,13,例:求下列微分方程的齐次解,解:齐次方程为,特征方程为:,特征根为:,齐次解为:,2.2微分方程的建立与求解,14,求特解:,特解需要根据方程右边激励的形式确定,下面通过例题说明特解的求解方法。,2.2微分方程的建立与求解,15,设特解为:,例:已知激励信号为分别求下列微分方程的特解,解:(1)将激励代入方程得:,将代入方程得:,方程两边平衡,得:,则特解为:,解之得:,2.2微分方程的建立与求解,16,设特解为:,解:(2)将激励代入方程得:,将代入方程得:,方程两边平衡,得:,则特解为:,解之得:,2.2微分方程的建立与求解,17,激励函数e(t),响应函数r(t)的特解,或,表2-2线性时不变(LTI)系统与几种典型激励函数对应的特解,B,2.2微分方程的建立与求解,18,解:齐次方程为,特征方程为:,特征根为:,齐次解为:,例:已知激励信号为求下列微分方程的完全解,2.2微分方程的建立与求解,19,设特解为:,将激励代入方程得:,将代入方程得:,方程两边平衡,得:,则特解为:,解之得:,2.2微分方程的建立与求解,20,完全解中的系数需要通过系统的初始条件求取,如何根据起始状态确定初始条件,将在下一节介绍。,完全解为:,2.2微分方程的建立与求解,21,2.2微分方程的建立与求解,关于实际系统中的初始条件问题系统的起始条件就是系统响应及其各阶导函数在0-时刻的函数值,可用y(i)(0-),i=0,1,n-1表示;而系统的初始条件就是系统响应及其各阶导函数在0+时刻的函数值,用y(i)(0+),i=0,1,:,n-1表示。一般情况下,我们求的系统响应是指系统接入激励以后的响应,即0+t+。所以,应当利用系统的初始条件求齐次解中的各个系数。完全解中的系数需要通过系统的初始条件求取,如何根据起始状态确定初始条件,将在下一节介绍。,2.3起始点的跳变,2.3起始点的跳变,23,一、起始状态(0-)与初始状态(0+),起始状态(0-):激励信号接入之前瞬间系统的状态。,初始状态(0+):激励信号接入之后瞬间系统的状态。,2.3起始点的跳变,24,当系统用微分方程表示时,系统从0-到0+状态是否跳变取决于微分方程右端自由项是否包含及其各阶导数项。,一般情况下换路期间电容两端的电压和流过电感中的电流不会发生突变。这就是在电路分析中的换路定则:,对于具体的电网络,系统的0-状态就是系统中储能元件的储能情况;,但是当有冲激电流强迫作用于电容或有冲激电压强迫作用于电感,0-到0+状态就会发生跳变。,二、起始点的跳变,2.3起始点的跳变,25,二、起始点的跳变例1:建立电流i(t)的微分方程并求解i(t)在时的变化。,2.3起始点的跳变,e(t)=2V,26,2.3起始点的跳变,解:(1)列写电路的微分方程,27,2.3起始点的跳变,(2)求系统的完全响应齐次解:系统的特征方程:,特征根:,齐次解:,将电路参数代入,并整理方程得:,28,2.3起始点的跳变,特解:根据自由项令,将其代入原方程得:,要求系统的完全响应为:,29,2.3起始点的跳变,(3)确定换路后的,换路前(起始),换路后(初始)的,30,2.3起始点的跳变,由于电容两端电压和电感中的电流不会发生突变(根据物理过程分析),因而有:,31,2.3起始点的跳变,(4)求在时的完全响应,求得:,要求的完全响应为,32,配平的原理:t=0时刻微分方程左右两端的(t)及各阶导数应该平衡(其他项也应该平衡,我们讨论初始条件,可以不管其他项),三、冲激函数匹配法确定初始条件,已知0状态求0状态的值,可用冲激函数匹配法。,冲激与跳变的关系:,u(t)表示在0时刻从0到1的跳变,表示在0时刻相对单位跳变函数,因此,当某个状态包含K倍的冲激,就表示这个状态的积分状态出现了0时刻K倍的跳变。,2.3起始点的跳变,33,设,则,代入方程,得出,所以得,即,即,方程右端含项,它一定属于,解:由方程可知,例2:,2.3起始点的跳变,积分一次,34,解:齐次方程为,特征方程为:,特征根为:,齐次解为:,2.3起始点的跳变,35,设特解为:,将激励(1)代入方程得:,将代入方程得:,方程两边平衡,得:,则特解为:,解之得:,2.3起始点的跳变,36,因为在激励(1)的情况下,方程右端没有冲激函数,所以在起始点没有跳变,完全解为:,即:r(0+)=r(0-)=2,r(0+)=r(0-)=1,将r(0+)和r(0+)代入完全解表达式,得:,解得:,所以,当激励e(t)=3e-2t时,方程完全解为:,2.3起始点的跳变,37,此时,特解为0,即:,将激励(2)代入方程得:,完全解为:,在激励(2)的情况下,方程右端出现2倍冲激函数,它只能而且必须属于方程左端的,因此,r(t)在起始点有2倍跳变,而r(t)在起始点没有跳变,,即:r(0+)=r(0-)=2,r(0+)=r(0-)+2=3,2.3起始点的跳变,38,将r(0+)和r(0+)代入完全解表达式,得:,解得:,所以,当激励e(t)=2u(t)时,方程完全解为:,2.3起始点的跳变,39,2.3起始点的跳变,例4:用冲激函数匹配法求解例1中的电流i(t)的完全响应r(t)。,解:(1)求出时微分方程表示为,(2)用冲激函数匹配法求,40,2.3起始

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论