已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SVR模型 概括的说,SVR就是通过用内积函数定义的非线性变换将输入空间变换到高维空间,并在该高维空间求取回归函数的学习过程。ARIMA模型一、ARIMA模型简介ARIMA模型全称为差分自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法。其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项数; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。ARIMA模型的基本思想是:将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测。2、 ARIMA的基本知识、时间序列分析的基本步骤: 模型识别 模型估计 模型检验 模型应用三、ARIMA模型预测的基本程序(一)根据时间序列的序列图、自相关函数和偏自相关函数图,对序列的平稳性进行识别。一般来讲,经济运行的时间序列都不是平稳序列。 序列的平稳性检验方法,一种是根据时序图和自相关图显示的特征做出判断的图检验方法;一种是构造检验统计量进行假设检验的方法。(1)时序图检验 所谓时序图就是一个平面二维坐标图,通常横轴表示时间纵轴表示序列取值,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值的附近随机波动,而且波动的范围有界的特点。如果观察序列的时序图显示出该序列有明显的趋势性或周期性,那它通常不是平稳序列。根据这个性质,很多非平稳序列通过查看它的时序图可以立刻被识破出来。(2)自相关图检验 自相关图是一个平面二维坐标悬垂线图,一个坐标轴表示延迟时期数,另一个坐标轴表示自相关系数,通常以悬垂线表示自相关系数的大小。而平稳序列具有短期相关性,也即随着延迟期数的增加,平稳序列的自相关系数会很快的衰减向零,反之,非平稳序列的自相关系数衰减向零的速度通常比较缓慢。 (二)对非平稳序列进行平稳化处理。如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。 (三)根据时间序列模型的识别规则,建立相应的模型。若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。(如果在很长的滞后期仍然在两条标准差外,那可以就认为是拖尾了,如果在开始几期标准差外,剩下的都在两倍标准差内的话,就可以认为是截尾了啊。 )自相关系数偏自相关系数模型定阶拖尾p阶截尾AR(p)模型q阶截尾拖尾MA(q)模型拖尾拖尾ARMA(p,q)模型 (四)进行参数估计,检验是否具有统计意义。ARIMA模型中的参数有p,q,,一般利用极大似然估计或最小二乘估计。 (五)进行假设检验
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论