已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
两招极值点偏移问题一、极值点偏移的含义众所周知,函数满足定义域内任意自变量都有,则函数关于直线对称;可以理解为函数在对称轴两侧,函数值变化快慢相同,且若为单峰函数,则必为的极值点. 如二次函数的顶点就是极值点,若的两根的中点为,则刚好有,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数的极值点为,且函数满足定义域内左侧的任意自变量都有或,则函数极值点左右侧变化快慢不同. 故单峰函数定义域内任意不同的实数满足,则与极值点必有确定的大小关系:若,则称为极值点左偏;若,则称为极值点右偏.如函数的极值点刚好在方程的两根中点的左边,我们称之为极值点左偏.二、极值点偏移问题的一般题设形式:1. 若函数存在两个零点且,求证:(为函数的极值点); 2. 若函数中存在且满足,求证:(为函数的极值点);3. 若函数存在两个零点且,令,求证:;4. 若函数中存在且满足,令,求证:.二、运用判定定理判定极值点偏移的方法1、方法概述:(1)求出函数的极值点;(2)构造一元差函数;(3)确定函数的单调性;(4)结合,判断的符号,从而确定、的大小关系.口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数满足,为函数的极值点,求证:.(1)讨论函数的单调性并求出的极值点; 假设此处在上单调递减,在上单调递增.(2)构造; 注:此处根据题意需要还可以构造成的形式.(3)通过求导讨论的单调性,判断出在某段区间上的正负,并得出与的大小关系;假设此处在上单调递增,那么我们便可得出,从而得到:时,.(4)不妨设,通过的单调性,与的大小关系得出结论;接上述情况,由于时,且,故,又因为,且在上单调递减,从而得到,从而得证.(5)若要证明,还需进一步讨论与的大小,得出所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为,故,由于在上单调递减,故.【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求的单调性、极值点,证明与(或与)的大小关系;若试题难度较大,则直接给出形如或的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.【例题讲解】【例1】已知函数.(1)求函数的单调区间和极值;(2)若,且,证明:.【解析】容易求得第(1)问:在上单调递增,在上单调递减,的极值是。第(2)问:构造函数所以在R上单增,容易看出(找的就是它,构造的目的就是为了得到是正是负)所以,当x0时,不妨设,由(1)知,在上单调递增,.原命题得证。一定得构造?答:不。构造也行。证明如下:所以单增,不妨设,由(1)知,原命题得证。可否构造其他的?答:可以,这里的“2”是极值点的两倍。那答案为什么不给出其他的构造呢?因为那样很繁琐,也破坏了数学的对称美。其中这种构造的美感最强。【例2】函数有两极值点,且.证明:.【解析】令,则是函数的两个零点。令,令易得在区间单调减,单调增,所以,令当时,单调递减,有所以,所以,因为,在上单调递减所以,即.【例3】已知函数,若,且,证明:.【解析】由函数单调性可知:若,则必有。所以,而,令,则所以函数在为减函数,所以,所以即,所以,所以.【例4】已知函数有两个零点.设是的两个零点,证明:.【解析】不妨设,由题意知,要证不等式成立,只需证明当成立即可。(这里的1是极值点,求导可得)令当时,令,则,且在上递增,则.【例5】已知函数,其中(1)若函数有两个零点,求的取值范围;(2)若函数有极大值为,且方程的两根为,且,证明: .【解析】有a不怕 ,能算出来的。(1)(1)当时, 函数在上单调递增,不可能有两个零点(2)当时, 0-极大值的极大值为,由得;因为,所以在必存在一个零点;显然当时, ,所以在上必存在一个零点;所以当时,函数有两零点.(2) 由(1)可知。当时,的极大值为.令,由又因为在上单调递减,所以,原命题得证.【例8】已知函数,若任意不同的实数满足,求证:.【解析】消参数因为函数在上为减函数,所以原式构造函数,则,则由均值不等式显然可得(当且仅当时取等号),在为减函数,则,得证.题型二 利用对数平均不等式两个正数和的对数平均定义:对数平均与算术平均、几何平均的大小关系:(此式记为对数平均不等式)取等条件:当且仅当时,等号成立.只证:当时,.不失一般性,可设.证明如下:(I)先证:不等式构造函数,则.因为时,所以函数在上单调递减,故,从而不等式成立;(II)再证:不等式构造函数,则.因为时,所以函数在上单调递增,故,从而不等式成立;综合(I)(II)知,对,都有对数平均不等式成立,当且仅当时,等号成立.【例1】已知函数,为常数,若函数有两个零点,证明:【证明】利用参数作为媒介,换元后构造新函数: 不妨设,(思考下:为什么一定成立?提示:用去判断).【例2】已知函数()讨论函数的单调区间与极值;()若且恒成立,求的最大值;()在()的条件下,且取得最大值时,设,且函数有两个零点,求实数的取值范围,并证明: 【答案】()答案见解析;()当时, 最大为1;()证明过程见解析【解析】第一第二问略()由()知,当取最大值1时, ,记,不妨设,由题意,则, ,欲证明,只需证明,只需证明,即证明,即证,设,则只需证明,也就是证明,记,所以,所以在单调递增,所以,所以原不等式成立.(这里是把对数平均不等式重新证了一遍,当然,考试的时候,要这么写的)【例3】已知函数有两个零点.证明:.【解析】参变分离得:,由得,将上述等式两边取以为底的对数,得,化简得:,故由对数平均不等式得:,从而 等价于: 由,故,证毕. 【例4】已知函数 .如果,且.证明:.【解析】设两边取对数根据对数平均值不等式原命题得证【例5】(苏州市2019届调研试题)20(本题满分16分)设函数,a为常数(1)当时,求在点处的切线方程;(2)若为函数的两个零点,求实数的取值范围;比较与的大小关系,并说明理由【解析】解:(1)当时,得,所以,所以在点处的切线方程为; 3分(2)(),得,当时,单调递减不满足题意; 4分当时,;,;所以在上单调减,在上单调增因为函数有两个零点,所以,得 6分下证:在区间和内分别存在一个零点.在内,因为,而,又在上单调减,所以由零点存在性原理可知:在内有一个零点; 9分法一:在内,可以证明,所以即,所以,取,得, 而,又在上单调递增,所以由零点存在性原理可知:在内有一个零点 12分法二:在内,因为(易证),所以即,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 具身智能+老龄化社区智能巡防与应急响应机制研究报告
- 具身智能+工业安全生产巡检机器人优化研究报告
- 全球视野下人工智能技术的合作与创新策略
- 新质生产力与可持续发展协同策略
- 江西省高安第二中学2026届化学高三第一学期期末监测试题含解析
- 河北省唐山市唐县第一中学2026届高二化学第一学期期中联考试题含解析
- 2025医疗器械动物实验方案报告模板(可编辑!)
- 2026届广州协和中学化学高二上期中检测模拟试题含解析
- 辽宁省辽油二高2026届化学高三第一学期期中复习检测模拟试题含解析
- 2025年新媒体行业内容创作与传播创新研究报告及未来发展趋势
- 箱式变电站安装施工方案
- 青青河畔草-古诗十九首其二-赏析-汉
- 数据魔方Fine BI考试FCBA考试题
- 统编版四年级语文上册第三单元主题阅读(含答案)
- (小学6年级)广东省2024年第34届“YMO”青少年数学思维研学交流活动复选(含答案)
- 周一清晨的领导课(原版)
- 《休闲农业项目策划与组织》课件-动物类体验活动典型案例分析与实践
- 《过渡金属配合物》课件
- 中国普通食物营养成分表(修正版)
- 2023年4月8日四川泸州事业单位招聘考试《综合知识》试题
- 对话大国工匠 致敬劳动模范学习通超星期末考试答案章节答案2024年
评论
0/150
提交评论