河南示范性高中罗山高中高三数学复习单元过关练选修21_第1页
河南示范性高中罗山高中高三数学复习单元过关练选修21_第2页
河南示范性高中罗山高中高三数学复习单元过关练选修21_第3页
河南示范性高中罗山高中高三数学复习单元过关练选修21_第4页
河南示范性高中罗山高中高三数学复习单元过关练选修21_第5页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省示范性高中罗山高中2016届高三数学复习单元过关练:选修2-1(含解析)1在空间直角坐标系中,一定点到三个坐标轴的距离都是,则该点的坐标 可能为 ( ) A B C D 2.下列命题是假命题的是( )A B. C. D. 3在ABC中,“”是“”的 ( )A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件4若,是平面内的三点,设平面的法向量,则 . ( )5已知动点在椭圆上,若点坐标为,且则的最小值是( )A B C D6下列结论中,正确的是()命题“如果,则”的逆否命题是“如果,则”;已知为非零的平面向量甲:,乙:,则甲是乙的必要条件,但不是充分条件;是周期函数,是周期函数,则是真命题;命题的否定是:7准线方程为的抛物线的标准方程是( )A. B. C. D. 8若方程=1表示双曲线,则实数a的取值范围是( )A.a3 B.-2a3 D.-2a39有下列四个命题:“若 , 则互为相反数”的逆命题; “全等三角形的面积相等”的否命题;“若 ,则有实根”的逆否命题;“存在,使成立”的否定其中真命题为( )A B C D10下列命题中,真命题是 ( )A BC D11已知双曲线C1:-=1(a0,b0)的离心率为2.若抛物线C2:x2=2py(p0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为()(A)x2=y (B)x2=y(C)x2=8y (D)x2=16y12椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,则该椭圆的离心率e的范围是( )A. B. C. D.13在平面直角坐标平面内,不难得到“对于双曲线上任意一点,若点在轴、轴上的射影分别为,则必为定值”。类比于此,对于双曲线上任意一点,类似的命题为 14抛物线的准线方程为.15直线与双曲线相交于两点,则=_ _16已知双曲线1(a0,b0)与抛物线y28x有一个公共的焦点F,且两曲线的一个交点为P,若PF5,则双曲线的渐近线方程为_17(本小题满分12分)设向量,其中(1)请列出有序数组的所有可能结果;(2)记“使得成立的”为事件,求事件发生的概率19已知椭圆的中心在原点,一个焦点是,且两条准线间的距离为。(I)求椭圆的方程;(II)若存在过点A(1,0)的直线,使点F关于直线的对称点在椭圆上,求的取值范围。20(本小题满分12分)已知椭圆C:的长轴长为4.(1)若以原点为圆心,椭圆短半轴长为半径的圆与直线相切,求椭圆焦点坐标;(2)若点P是椭圆C上的任意一点,过原点的直线L与椭圆交于M,N两点,直线PM,PN的斜率乘积为,求椭圆的方程.21在四棱锥中,平面,为的中点。()求证:平面;()平面内是否存在一点,使平面?若存在,确定点的位置;若不存在,请说明理由。22给定抛物线C:F是C的焦点,过点F的直线与C相交于A、B两点.()设的斜率为1,求夹角的大小;()设,求在轴上截距的变化范围.4参考答案1A【解析】设该点坐标为,依题意可得解得,故选A2B【解析】由指数的含义知恒成立.A正确;时,B错误;当时,C正确;正切函数的值域是,D正确。故选B3A【解析】故选A42:3:(-4)【解析】本题考查空间向量的法向量.由得因为为平面的法向量,则有,即由向量的数量积的运算法则有解得所以故正确答案为5B【解析】试题分析:由可知点M的轨迹为以点A为圆心,1为半径的圆,过点P作该圆的切线PM,则|PA|2=|PM|2+|AM|2,得|PM|2=|PA|2-1,要使得的值最小,则要的值最小,而的最小值为a-c=2, 此时,故选B考点:椭圆的定义6C【解析】试题分析:由原命题和逆否命题的关系知正确;由可得或与向量垂直,所以正确;中命题是假命题,所以是假命题,所以错误;特称命题的否定是全称命题,所以正确.考点:本小题主要考查原命题与逆否命题的关系、充要条件的判断、含逻辑联结词的命题的真假和特称命题的否定,考查学生对概念性问题的理解和应用.点评:由得不出,这是学生容易忽略的问题,一定要特别注意.7B【解析】略8D【解析】当焦点在x轴上时,解得a3;当焦点在y轴上时,解得-2a2.9C【解析】试题分析:解:“若 , 则互为相反数”的逆命题:“若互为相反数,则”是真命题;“全等三角形的面积相等”的否命题:“若两个三角形不全等,则这两个三角形的面积不相等”是假命题;“若 ,则有实根”是真命题,则它的的逆否命题也是真命题;“存在,使成立”是真命题,它的的否定是假命题故选C.考点:四种命题及其关系.10D【解析】本题考查的是命题的判断。采用排除法:,所以不成立;时,所以不成立;中的,所以方程无,所以不成立。应选。11D【解析】由e=2得4=1+,=3.双曲线的渐近线方程为y=x,抛物线x2=2py的焦点是(0,),它到直线y=x的距离d=2=,p=8.抛物线方程为x2=16y.故选D.12B【解析】试题分析:设则.又由于,所以即可得.所以点P在以OA为直径的圆上.及椭圆与该圆有公共点. 消去y得.由于过点A所以有一个根为,另一个根设为,则由韦达定理可得.又因为.所以解得.故选B.考点:1.线的垂直问题转化到向量垂直问题.2.曲线的公共点转化为方程组的解得问题.3.区间根的问题.13若点在两渐近线上的射影分别为,则必为定值【解析】略14 【解析】 15【解析】略16yx【解析】设点P(m,n),依题意得,点F(2,0),由点P在抛物线y28x上,且PF5得由此解得m3,n224.于是有由此解得a21,b23,该双曲线的渐近线方程为yxx.17(1)可能结果共有16个,详见解析;(2).【解析】试题分析:(1)我们可以用列举的办法列出所有可能结果,详见解析;(2)由(1)知基本事件总数为16个,满足即,代入坐标得,由于,故事件A包含的基本条件为(2,1)和(3,4)共2个故所求的概率.试题解析:(1)有序数组的所有可能结果为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共有16个; 6分(2)根据已知得,由可知,所以有,即由于,故事件A包含的基本条件为(2,1)和(3,4)共2个又基本事件的总数为16,故所求的概率 12分考点:向量运算与古典概型. 18(1) 椭圆的标准方程为+=1.【解析】(1)由题中条件,设椭圆的标准方程为+=1,ab0,右焦点为(2,0),a2=b2+4,即椭圆的方程为+=1.点(2,)在椭圆上,+=1.解得b2=4或b2=2(舍),由此得a2=8,即椭圆的标准方程为+=1.(2)设直线l的方程为y=x+m,与椭圆C的交点为A(x1,y1)、B(x2,y2),则由得12x2+16mx+8m232=0,即3x2+4mx+2m28=0.0,m212,即2m2.则x1+x2=,y1+y2=x1+m+x2+m=m,AB中点M的坐标为(m,).线段AB的中点M在过原点的直线x+2y=0上.(3)如下图,作两条平行直线分别交椭圆于点A、B和点C、D,并分别取AB、CD的中点M、N,连结直线MN;又作两条平行直线(与前两条直线不平行)分别交椭圆于点A1、B1和点C1、D1,并分别取A1B1、C1D1的中点M1、N1,连结直线M1N1,那么直线MN和M1N1的交点O即为椭圆中心 .19(I)椭圆的方程是(II)的取值范围是【解析】解:(I)设椭圆的方程为由条件知且所以故椭圆的方程是(II)依题意, 直线的斜率存在且不为0,记为,则直线的方程是 设点关于直线的对称点为则 解得因为点在椭圆上,所以即设则因为所以于是,当且仅当上述方程存在正实根,即直线存在.解得所以 即的取值范围是20(1)两个焦点坐标为(2)椭圆方程为【解析】解:(1)由直线与圆相切知:,得(2分)由,得,则两个焦点坐标为(4分)(2)由于过原点的直线L与椭圆的两个交点关于原点对称不妨设:在椭圆上,满足,相减得: (8分)由题意知斜率存在,则(10分)由,得,所求的椭圆方程为 (12分)21()证明见解析;()存在,点N为AE的中点.【解析】试题分析:()取PD中点E,连接EM、AE,可得EMCD,根据ABCD得到EM/AB,由四边形是平行四边形得到BMAE即得证. ()由平面得到,结合推出;再据PAAD,E是PD的中点,得到平面作MNBE,交AE于点N,可知MN平面PBD;又,EMCD1,由,推出AN得出结论.试题解析:()证明如图,取PD中点E,连接EM、AE,EMCD,而ABCD, EM/AB四边形是平行四边形 , BMAEAE平面ADP,BM平面ADP, BM平面PAD 5分()解平面而平面PAAD,E是PD的中点,平面作MNBE,交AE于点N, 则MN平面PBD易知,EMCD1,由,得,AN, 即点N为A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论