




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
鹤壁淇滨高中2017-2018学年下学期高二年级第三次月考理科数学试卷考试时间:120分钟 一、单选题(每题5分共60分)1某校教学大楼共有5层,每层均有2个楼梯,则由一楼至五楼的不同走法共有()A. 24种 B. 52种 C. 10种 D. 7种2乘积等于( )A. B. C. D. 3从名男生和名女生中随机选取名学生去参加一项活动,则至少有一名女生的抽法共有多少种( )A. B. C. D. 4满足方程的的值为( )A. 1,3 B. 3,5 C. 1,3,5 D. 1,3,5,-75记者要为4名志愿者和他们帮助的2位老人照相,要求排成一排,2位老人不相邻,不同的排法共有()种A. 240 B. 360 C. 480 D. 7206设,则 ( )A. 256 B. 0 C. D. 17展开式中, 项的系数为( )A. 30 B. 70 C. 90 D. -1508在的展开式中, 的系数是( )A. 55 B. 66 C. 165 D. 2209在展开式中, 二项式系数的最大值为 ,含项的系数为,则( )A. B. C. D.10随机变量的分布列为,其中为常数,则 等于A B C D 11甲骑自行车从地到地,途中要经过个十字路口己知甲在每个十字路口遇到红灯时的概率都是,且在每个路口是否遇到红灯相互独立,那么甲在前两个十字路口都没有遇到红灯,直到第个路口才首次遇到红灯的概率是( )A. B. C. D. 12袋中有大小相同的3个红球,5个白球,从中不放回地依次摸取2球,在已知第一次取出白球的前提下,第二次取得红球的概率是()A. B. C. D.二、填空题(每题5分共20分)13有5名男生和3名女生,从中选出5人分别担任语文、数学、英语、物理、化学学科的科代表,若某女生必须担任语文科代表,则不同的选法共有_种(用数字作答)14用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有 种不同的涂色方法15若将函数表示成则的值等于_16在考试中,需回答三个问题,考试规则规定:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分的所有可能取值是_.三、解答题(17题10分,其它每题12分)17(10分)()解不等式;()求值18(12分)已知N*)展开式中第五项的系数与第三项的系数之比为(1)求 n的值;(2)求展开式中含的项.19(本小题满分12分)在某种考试中,设A、B、C三人考中的概率分别是、,且各自考中的事件是相互独立的。(1)求3人都考中的概率;(2)求只有2人考中的概率;(3)几人考中的事件最容易发生?20(本题满分12分)一盒子中有8个大小完全相同的小球,其中3个红球,2个白球,3个黑球.()若不放回地从盒中连续取两次球,每次取一个,求在第一次取到红球的条件下,第二次也取到红球的概率;()若从盒中任取3个球,求取出的3个球中红球个数X的分布列.21(12分)已知函数.(1)若函数在上是增函数,求实数的取值范围;(2)若函数在上的最小值为3,求实数的值.22(12分)已知函数, (为自然对数的底数)(1)讨论函数的单调性;(2)当时, 恒成立,求实数的取值范围参考答案1A 2B 3A 4A 5C 6D 7B 8D 9D 10A 11C 12D13840 14 1520 16-300,-100,100,30017();()见解析.试题解析:()原不等式可化为,即,又且,又,()由组合数的定义知又,当时,原式;当时,原式;当时,原式18(1);(2)解:(1)依题意:,化简得:,(2)令得,故含的项为19(1)3人都考中的概率是(2)只有2人考中的概率是(3)1人考中的事件最容易发生。【解析】解答:(1)3人都考中的概率P=P(A)P(B)P(C)= =;(2)只有2人考中的概率P=+=;(3)3人都未考中的概率是=,只有1人考中的概率是1-=,经比较得只有1人考中的概率最大,所以1人考中的事件最容易发生。20()() X的分布列为 X的数学期望为: 【解析】解:()设事件A=“第一次取到红球”,事件B=“第二次取到红球”由于是不放回地从盒中连续取两次球,每次取一个,所以第一次取球有8种方法,第二次取球是7种方法,一共的基本事件数是56,由于第一次取到红球有3种方法,第二次取球是7种方法, 2分又第一次取到红球有3种方法,由于采取不放回取球,所以第二次取到红球有2种方法, 4分()从盒中任取3个球,取出的3个球中红球个数X的可能值为0,1,2,3 5分 且有 , , 9分 X的分布列为 10分X的数学期望为: 12分21(1);(2).(1),由已知,即,.(2)当,即时, , ,在上单调递增,舍;当,即时, ,在上单调递减; , ,在上单调递增,舍;当,即时, , ,在上单调递减,; 综上, .22(1)见解析(2)解:(1)若, , 在上单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国广东省生态旅游行业投资研究分析及发展前景预测报告
- 高可靠智能型低压开关柜融资投资立项项目可行性研究报告(齐鲁咨询)
- 炭化竹丝席行业深度研究分析报告(2024-2030版)
- 模拟程控电话交换机项目投资可行性研究分析报告(2024-2030版)
- 村室培训课件
- 2025年中国文创产品行业市场深度分析及发展前景预测报告
- 中国牛皮毯项目投资可行性研究报告
- 中国除虫菊素行业发展趋势及投资前景预测报告
- 中国种用糯高粱市场前景预测及投资规划研究报告
- 2025-2030年中国金属除锈防锈材料行业深度研究分析报告
- 肿瘤科新护士入科培训和护理常规
- 体育器材采购设备清单
- 第4章 颌位(双语)
- 二手车鉴定评估报告书最终
- 电影场记表(双机位)
- 塔吊负荷试验方案
- 电子商务专业“产教融合、五双并行”人才培养 模式的实践研究课题论文开题结题中期研究报告(经验交流)
- 物流运输管理制度
- 购买社区基本公共养老、青少年活动服务实施方案
- 伤口和伤口敷料基础知识.ppt
- 《慢性肾脏病》PPT课件.ppt
评论
0/150
提交评论