




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
导数及其应用模块框架高考要求要求层次重难点导数及其应用导数概念及其几何意义导数的概念A了解导数概念的实际背景;理解导数的几何意义导数的几何意义C导数的运算根据导数定义求函数,的导数C能根据导数定义,求函数(为常数)的导数能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如的复合函数)的导数导数的四则运算C简单的复合函数(仅限于形如)的导数)B导数公式表C导数在研究函数中的应用利用导数研究函数的单调性(其中多项式函数不超过三次)C了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)会利用导数解决某些实际问题函数的极值、最值(其中多项式函数不超过三次)C利用导数解决某些实际问题B定积分与微积分基本定理定积分的概念A了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念了解微积分基本定理的含义微积分基本定理A知识内容一、导数的概念与几何意义1函数的平均变化率:一般地,已知函数,是其定义域内不同的两点,记,则当时,商称作函数在区间(或)的平均变化率注:这里,可为正值,也可为负值但,可以为2函数的瞬时变化率、函数的导数:设函数在附近有定义,当自变量在附近改变量为时,函数值相应的改变如果当趋近于时,平均变化率趋近于一个常数(也就是说平均变化率与某个常数的差的绝对值越来越小,可以小于任意小的正数),那么常数称为函数在点的瞬时变化率“当趋近于零时,趋近于常数”可以用符号“”记作:“当时,”,或记作“”,符号“”读作“趋近于”函数在的瞬时变化率,通常称为在处的导数,并记作这时又称在处是可导的于是上述变化过程,可以记作“当时,”或“”3可导与导函数:如果在开区间内每一点都是可导的,则称在区间可导这样,对开区间 内每个值,都对应一个确定的导数于是,在区间内,构成一个新的函数,我们把这 个函数称为函数的导函数记为或(或)导函数通常简称为导数如果不特别指明求某一点的导数,那么求导数指的就是求导函数4.导数的几何意义:设函数的图象如图所示为过点与的一条割线由此割线的斜率是,可知曲线割线的斜率就是函数的平均变化率当点沿曲线趋近于点时,割线绕点转动,它的最终位置为直线,这条直线叫做此曲线过点的切线,即切线的斜率由导数意义可知,曲线过点的切线的斜率等于二、导数的运算1初等函数的导数公式表,为正整数,为有理数注:,称为的自然对数,其底为,是一个和一样重要的无理数注意2导数的四则运算法则:函数和(或差)的求导法则:设,是可导的,则,即,两个函数的和(或差)的导数,等于这两个函数的导数和(或差)函数积的求导法则:设,是可导的,则,即,两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数的乘上第二个函数的导数由上述法则即可以得出,即,常数与函数之积的导数,等于常数乘以函数的导数函数的商的求导法则:设,是可导的,则特别是当时,有三、导数的应用1利用导数判断函数的单调性的方法:如果函数在的某个开区间内,总有,则在这个区间上是增函数;如果函数在的某个开区间内,总有,则在这个区间上是减函数2利用导数研究函数的极值:已知函数,设是定义域内任一点,如果对附近的所有点,都有,则称函数在点处取极大值,记作并把称为函数的一个极大值点如果在 附近都有,则称函数在点处取极小值,记作并把称为函数的一个极小值点极大值与极小值统称为极值极大值点与极小值点统称为极值点(二)主要方法:1求函数的极值的方法:第1步 求导数;第2步 求方程的所有实数根;第步 考察在每个根附近,从左到右,导函数的符号如何变化如果的符号由正变负,则是极大值;如果由负变正,则是极小值如果在的根的左右侧,的符号不变,则不是极值2函数的最大(小)值是函数在指定区间的最大(小)的值求函数最大(小)值的方法:第1步 求在指定区间内所有使的点;第2步 计算函数在区间内使的所有点和区间端点的函数值,其中最大的为最大值,最小的为最小值四、导数与其它知识综合1导数与函数的性质、基本初等函数的结合,这是导数的最主要的考查内容;2导数与数列的结合,要注意数列作为函数的特殊性;3导数与三角函数的结合;4导数在不等式的证明中的运用,经常需要构造函数,利用导数去求单调性,证明不等式五、微积分与定积分基本定理1函数定积分:设函数定义在区间上用分点,把区间分为个小区间,其长度依次为记为这些小区间长度的最大值,当趋近于时,所有的小区间长度都趋近于在每个小区间内任取一点,作和式当时,如果和式的极限存在,我们把和式的极限叫做函数在区间上的定积分,记作,即其中叫做被积函数,叫积分下限,叫积分上限叫做被积式此时称函数在区间上可积2曲边梯形:曲线与平行于轴的直线和轴所围成的图形,通常称为曲边梯形根据定积分的定义,曲边梯形的面积等于其曲边所对应的函数在区间上的定积分,即求曲边梯形面积的四个步骤:第一步:分割在区间中插入各分点,将它们等分成个小区间,区间的长度,第二步:近似代替,“以直代曲”,用矩形的面积近似代替小曲边梯形的面积,求出每个小曲边梯形面积的近似值第三步:求和第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版事业单位人员海外实习与职业规划服务合同
- 2025年度围墙夜景照明设计与施工合同
- 2025成都二手房买卖合同含租赁权处理及转租条款
- 2025年度车辆租赁及车辆租赁租赁车辆租赁服务合同
- 贵州省凯里市2025年上半年公开招聘辅警试题含答案分析
- 贵州省余庆县2025年上半年事业单位公开遴选试题含答案分析
- 2025蛋糕店员工保密与竞业禁止劳动合同书
- 2025年文化产业园区场地租赁合同模板(含知识产权)
- 贵州省都匀市2025年上半年公开招聘村务工作者试题含答案分析
- 2025年度新能源汽车租赁共享经济合同范本
- 检验科技术人员基本技能考核表2014
- 小学生防性侵安全教育主题班会课件
- 专题11读后续写海豚的秘密(二次开发微技能名校模拟)1月“九省联考”英语真题解读与考后变式训练
- 《教育心理学(第3版)》全套教学课件
- DL∕T 1917-2018 电力用户业扩报装技术规范
- 模态逻辑的本体论含义
- 中国舷外机(船外机)行业现状及趋势
- 顶楼违建房买卖协议书
- 输液过程中出现肺水肿的应急预案及流程
- 大学团支书竞选
- 连翘仿野生种植技术规范
评论
0/150
提交评论