




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第9讲 直线与圆锥曲线的位置关系随堂演练巩固1.已知直线x-y-1=0与抛物线相切,则a等于( ) A.B.C.D.4 【答案】C 【解析】由 消去y得所以 解得. 2.已知双曲线过点M(m,0)作垂直于双曲线实轴的直线与双曲线交于两点A、B.若AOB是锐角三角形(O为坐标原点),则实数m的取值范围是( ) A. B. C. D. 【答案】D 【解析】依题意可得 . AOB是锐角三角形,必有是锐角,即与的夹角为锐角.由得 .但根据双曲线的范围知,应有m1时,直线y=ax-a恒在抛物线的下方,则a的取值范围是 . 【答案】 【解析】由题意联立 整理可得由解得a=0或a=4,此时直线与抛物线相切,因为直线横过定点(1,0),结合图形可知当时直线y=ax-a恒在抛物线的下方. 8.已知直线l与椭圆交于、两点,线段的中点为P,设直线l的斜率为直线OP的斜率为则的值等于 . 【答案】 【解析】设则. 由 相减得. 故. 9.已知有公共焦点的椭圆与双曲线中心为原点,焦点在x轴上,左、右焦点分别为、且它们在第一象限的交点为P,是以为底边的等腰三角形.若|=10,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是 . 【答案】 【解析】设它们的焦距为2c,则|=|=2c,双曲线的离心率由得. 所以椭圆的离心率. 10.过抛物线的焦点作斜率为1的直线与该抛物线交于A,B两点,A,B在x轴上的正射影分别为D,C.若梯形ABCD的面积为,则p= . 【答案】2 【解析】抛物线的焦点为设直线AB的方程为即y=x+. 联立 消去y,得. . |CD|=|. 由|AD|+|BC| 解得. p0,p=2. 11.已知点A(0,2)和抛物线C:求过点A且与抛物线C相切的直线l的方程. 【解】设直线l的方程为y=kx+2,这个方程与抛物线C的方程联立,得方程组 当k=0时,由方程组得可知此时直线l与抛物线相交于点. 当时,由方程组消去x,得方程 .(*) 关于y的二次方程(*)的判别式.由0,得可知此时直线l与抛物线C有一个公共点,即它们相切.直线l的方程为3x-4y+8=0. 当直线l的斜率不存在时,直线l就是y轴,其方程为x=0. 所以,直线l的方程为3x-4y+8=0,或x=0. 12.已知椭圆0)的一个焦点在直线l:x=1上,其离心率.设P、Q为椭圆上不同的两点,且弦PQ的中点T在直线l上,点. (1)求椭圆的方程; (2)试证:对于所有满足条件的P、Q,恒有|RP|=|RQ|. 【解】(1)椭圆的一个焦点在直线l:x=1上,所以c=1. 又因为离心率即所以a=2,从而. 所以椭圆的方程为. (2)证明:设 则 . 又因为P、Q都在椭圆上, 所以两式相减得 因为点T是PQ的中点,所以 于是 所以 即=0,所以,即RT是线段PQ的垂直平分线,所以恒有|RP|=|RQ|. 13.已知椭圆:0)的右顶点为A(1,0),过的焦点且垂直长轴的弦长为1. (1)求椭圆的方程. (2)设点P在抛物线:R)上在点P处的切线与交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值. 【解】(1)由题意,得 从而 因此,所求的椭圆方程为. (2)设 则抛物线在点P处的切线斜率为y| 直线MN的方程为y=2tx-. 将上式代入椭圆的方程中,得 即4=0. 因为直线MN与椭圆有两个不同的交点, 所以式中的 . 设线段MN的中点的横坐标是则 . 设线段PA的中点的横坐标是则. 由题意,得 即1=0. 由式中的得或. 当时,h 则不等式不成立,所以. 当h=1时,代入方程得t=-1, 将h=1,t=-1代入不等式,检验成立. 所以,h的最小值为1. 拓展延伸14.(2012江西宜春三校联考)已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为且椭圆E上一点到两个焦点距离之和为是过点P(0,2)且互相垂直的两条直线交E于A,B两点交E于C,D两点,AB,CD的中点分别为M,N. (1)求椭圆E的方程; (2)求的斜率k的取值范围; (3)求的取值范围. 【解】(1)设椭圆方程为0), 由 得 椭圆方程为. (2)由题意知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 可靠性增强方法-洞察及研究
- 税务师法律责任-洞察及研究
- 需求预测模型改进-洞察及研究
- 侧弯患者社会适应能力-洞察及研究
- 考古资料共享-洞察及研究
- 车钩电磁兼容性分析-洞察及研究
- GB/T 15473-2025核电厂安全级静止式蓄电池充电器、逆变器和不间断电源系统的鉴定
- 森林灭火知识培训方案课件
- 森林消防装备维护保养课件
- 4.3.2发生在肺内的气体交换 解码呼吸的“动力之源”肺与外界的气体交换课件(内嵌视频)人教版(2024)七年级生物下册
- DB14-T 3398-2025 人社业务就近办服务规范
- 再生资源安全管理制度
- 2025年成都市中考道德与法治试题卷(含答案)
- 采棉机合伙合同范本
- 《小肠的结构与功能》课件
- 教师违反职业道德行为处理办法培训
- 高中生德育教育主题班会
- 婚介服务协议书范本
- 2025届高考作文备考之主题素材:家国情怀
- 蜜雪冰城加盟合同(2025年版)
- ACS合并消化道出血治疗策略
评论
0/150
提交评论