



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市第六中学2014届高三数学第四次模拟考试题 理(无答案)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一个是输出是开始结束输入否符合题目要求的1已知集合,为虚数单位,复数的实部,虚部,模分别为a,b,t,则下列选项正确的是 ( )A B C D2如右图所示的程序框图的输出值,则输入值 ( ) A BC D3已知命题p:x,cos2xcosxm0的否定为假命题,则实数m的取值范围是 ( )A,1 B,2 C1,2 D,)4关于统计数据的分析,以下几个叙述中,正确的个数为 ( ) 利用残差进行回归分析时,若残差点比较均匀地落在宽度较窄的水平带状区域内,则说明线性回归模型的拟合精度较高; 将一组数据中的每个数据都减去同一个数后,期望与方差均没有变化; 调查剧院中观众观后感时,从50排(每排人数相同)中任意抽取一排的人进行调查是分层抽样法; 已知随机变量X服从正态分布N(3,1),且P(2X4)0.682 6,则P(X4)等于0.158 7 某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人为了了解 该单位职工的健康情况,用分层抽样的方法从中抽取样本若样本中的青年职工为7人, 则样本容量为15人; A2 B3 C4 D55设P是双曲线上除顶点外的任意一点,、分别是双曲线的左、右焦点,的内切圆与边相切于点M,则 ( )A B C D6已知函数是周期为2的周期函数,且当时,则函数的零点个数是 ( )A9 B10 C11 D127一个多面体的直观图、主视图、左视图、俯视图如右图所示,、分别为、的中点, 下列结论中正确的个数有 ( ) 直线与相交; ; /平面; 三棱锥的体积为。A4个 B3个 C2个 D1个8已知为平面内两定点,过该平面内动点作直线的垂线,垂足为,若,其中为实数且为常数,则动点的轨迹不可能是 ( )A圆 B椭圆 C抛物线 D双曲线9已知点、,直线与线段相交,则的最小值为 ( )A B C D10已知外接圆的半径为,且,从圆内随机取一个点,若点取自内的概率恰为,则的形状为 ( )A直角三角形 B等边三角形 C钝角三角形 D等腰直角三角形11将三颗骰子各掷一次,记事件“三个点数都不同”,“至少出现一个6点”,则条件概率,分别是 ( )A, B, C,D,12已知四面体中, PA=4,AC=,PB= BC=,平面PBC,则四面体的内切球半径与外接球半径的比为 ( )A B C D.第卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分将答案填在机读卡上相应的位置13已知,则二项式的展开式中含项的系数是 .14在中,所对边分别为、若,则 15已知角是第二象限角,且,且的图像关于直线对称,则 16下列命题中错误的命题序号为 ;(将所有错误命题的序号都填在横线上!) 对具有线性相关的变量有一组观测数据,其回归直线方程是,且,则实数; 已知,则函数的最小值为16; 在上恒成立在上恒成立; “平面向量与的夹角是钝角”的充分必要条件是“”;三、解答题:本大题共6小题,共70分解答时应写出必要的文字说明、证明过程或演算步骤17(本小题满分12分)设数列的前项和为.已知,()求数列的通项公式;()记为数列的前项和,求 18.(本小题满分12分)甲、乙、丙、丁、戊5名学生进行劳动技术比赛,决出第一名至第五名的名次比赛之后甲乙两位参赛者去询问成绩,回答者对甲说“很遗憾,你和乙都没有得到冠军”,对乙说“你当然不会是最差的”( I )从上述回答分析,5人的名次排列可能有多少种不同的情况;()比赛组委会规定,第一名获奖金300元,第二名获奖金200元,第三名获奖金100元, 第四及第五名没有奖金,求丙获奖金数的分布列及数学期望19(本小题满分12分)在直三棱柱中, ,, 是的中点,是的中点; ()求证:MN平面; ()求点到平面BMC的距离; ()求二面角的平面角的余弦值大小;20.(本小题满分12分)已知椭圆的焦点在轴上,中心在原点,过左焦点的直线与椭圆相交于两点,连接,构成三角形的周长为8; (I)求椭圆的方程; (II)顶点在原点的抛物线的焦点与椭圆的右焦点重合,斜率为1的直线被抛物线截得的弦长为4,求该直线的方程; (III)已知点是椭圆上的两动点,当时,求的最小值;21.(本小题满分12分)设函数 () 当时,求函数的极值; ()当时,讨论函数的单调性. ()若对任意及任意,恒有 成立, 求实数的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分22(本小题满分10分)选修41:几何证明选讲如图,已知O和M相交于A、B两点,AD为M的直径,直线BD交O于点C,点G为弧BD中点,连接AG分别交O、BD于点E、F,连接CE (1)求证:AGEF=CEGD; (2)求证: 23(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系。圆和直线的极坐标方程分别为。 (1)求圆和直线的直角坐标方程,并求直线被圆所截的弦长;(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务考试题及答案
- 中级英语写作知到智慧树答案
- 汽车维修工中级模拟习题(附参考答案)
- 成人护理学皮肤、运动、神经系统测试题(附答案)
- 药品注册管理办法试题(附答案)
- 化工总控工职业技能鉴定模拟练习题含答案
- 中学化学习题研究知到智慧树答案
- 2025年外墙清洗与外墙玻璃清洁服务合同范本
- 2025年二手车出口业务代理合同样本
- 2025版智慧城市建设招标投标服务合同
- 2025年GOLD COPD指南解读 课件
- 中国儿童肥胖诊断评估与管理专家共识解读 课件
- 老年人心理疏导与沟通培训
- 康复技术服务规范 (一)
- 养老院护理九防内容课件
- 天然气管网项目背景及意义
- 《风光摄影技巧》课件
- 面试官培训与面试标准制度
- 智慧城市行业智慧安防方案
- 二氧化碳捕集、运输和地质封存 - 词汇 - 共性术语 征求意见稿
- 仓库卸货安全培训
评论
0/150
提交评论