



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学均值不等式求最值策略陈本平 陈同量 米新生应用平均值不等式求最值时,要把握平均值不等式成立的三个条件“一正二定三相等”。忽略了任何一个条件,就会导致解题失败,若出现问题,又怎样另辟蹊径,寻求新方法来求最值呢?本文提出一些思路。 1. 调整符号,化负为正,使之适合“一正”条件,过第一关 例1. 已知,求函数的最值。解:因为所以故所以 当且仅当,即或时,等号成立,但不合条件,舍去,故当时, 2. 拆添配凑,变动为定,使之适合“二定”条件,过第二关利用均值不等式求最值,变形构造出“定值”是难点,其方法如下:(1)变形法 例2. 求函数的最小值。解:因为所以故 当且仅当,即时,(2)配凑法 例3. 已知,求函数的最小值。解:因为则有所以 当且仅当,即时, 3. 分离常数 例4. 当时,求的最小值。解:因为所以所以 当且仅当,即取等号另一解(舍去)所以(2)倒数法 例5. 若,求函数的最大值。解:因为所以故(5)平方法 例6. 已知,求函数的最大值。解: 由于所以当且仅当时取等号,所以 4. 化归转化,寻求相等,过第三关 例7. 设,求的最小值。解:因为当且仅当,即时取等号所以点评:若与分别利用平均值不等式,再相乘求最值,问题出现在:前后取等条件不一致。 例8. 已知,且,求的最小值。解:因为,且所以 5. “三关”难过,前进受阻,应另辟蹊径(1)利用代数、三角换元 例9. 若a,b为正实数,且,求的最小值。解:因为,且所以可设则 当且仅当,即时取等号,这时,满足,所以(2)引入参数,巧渡难关 例10. 已知,且,求Pxy的最小值。解:设,由已知有所以 欲取等号,当且仅当时,有代入中,此时所以说明:请读者用三角换元解此题,可令(3)利用函数单调性 例11
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省成都市实验小学数学三年级试题∶解决问题解答应用题训练带答案解析
- 北师大版高考名词辨析句型测试题
- 数学初一分班测试试题经典套题及答案解析
- 2020-2021备战中考化学二模试题分类汇编-生活中常见的盐综合及详细答案
- 【语文】山西省太原市迎泽区青年路小学五年级下册期末复习试卷(含答案)
- 2025消防安全培训试题及答案
- 2025年国家公务员考试行测行政职业能力测验试卷与参考答案
- 2025年会计从业人员资格考试初级会计电算化历年参考题库含答案
- 2025年公务员国考行测模拟试卷附答案
- 职业能力倾向测验事业单位考试试题与参考答案2025年
- 2025年知识竞赛-监理知识竞赛历年参考题库含答案解析(5套典型题)
- 学堂在线 战场侦察监视技术与装备 章节测试答案
- DG-TJ08-2120-2025 集体土地所有权调查技术标准
- 脑梗死健康宣教及指导
- 遵守安全生产法 当好第一责任人
- 创伤性气胸护理查房
- DB42T 750-2011 家用燃气燃烧器具安装维修服务质量评价规范
- 氧化蜡行业深度研究分析报告(2024-2030版)
- 2025-2030年中国备件制造行业市场现状供需分析及投资评估规划分析研究报告
- 2025至2030中国智能功率模块(IPM)行业项目调研及市场前景预测评估报告
- 装修装饰-设计方案投标文件(技术方案)
评论
0/150
提交评论